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Sommario

Il progetto Street Sign Sense ha come obiettivo lo sviluppo di modelli YOLO12
per il rilevamento automatico dei segnali stradali. L’iniziativa combina applicazioni
pratiche in sistemi avanzati di assistenza alla guida e visione artificiale urbana con
finalita accademiche e di ricerca. Il modello é stato addestrato sul dataset perso-
nalizzato Street Sign Set, composto da circa 7000 immagini distribuite su 63 classi,
con annotazioni in formato YOLO. Sono stati testati e confrontati tre modelli del-
la famiglia YOLO12, nello specifico le varianti nano, small e medium, valutandoli
attraverso metriche consolidate quali Precision, Recall, mAP@50, mAP@50-95, F1-
Score e tempo medio di inferenza. Il training é stato condotto su due GPU T4 in
ambiente cloud Kaggle Notebook, estendendo il processo a 600 epoche con mecca-
nismo di early stopping. I risultati sperimentali mostrano prestazioni superiori del
modello medium, che raggiunge una mAP@50 di 0.916 e una mAP@50-95 di 0.811,
offrendo un’ottima accuratezza.
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Capitolo 1

Introduzione

1.1 Contesto

Rilevamento automatico dei segnali stradali

Il rilevamento automatico dei segnali stradali ¢ un’area di crescente rilevanza tra
la visione artificiale e il progresso dei sistemi di trasporto, in quanto permette di
analizzare e interpretare informazioni visive provenienti dall’ambiente circostante.
La capacita di un sistema di analizzare e interpretare il flusso video in ingresso ¢ il
fondamento su cui si costruiscono i sistemi avanzati di assistenza alla guida (ADAS)
e le funzionalita dei veicoli a guida autonoma.

La sfida non si limita alla semplice identificazione (classificazione), ma richiede
la localizzazione geometrica precisa del segnale nel piano immagine, un processo
noto come object detection. Tali applicazioni sono intrinsecamente safety-critical,
I'identificazione tempestiva e affidabile di un segnale di Stop o di un limite di velocita
é un requisito imprescindibile per la sicurezza e la corretta esecuzione delle manovre.

Per questi scenari operativi, i modelli devono risolvere un duplice problema con
estrema efficienza: devono essere stabili in presenza di grande variabilita visiva
(cambiamenti di illuminazione, occlusioni e angolazioni) e devono garantire inferenza
in tempo reale (tipicamente a frame rate superiori ai 30 FPS). Il progetto si inserisce
in questo contesto, cercando di ottimizzare I'equilibrio tra accuratezza e velocita di
esecuzione.

1.2 Obiettivo Tecnico

Finalita tecnica

L’obiettivo tecnico principale consiste nella realizzazione di un processo completo di
addestramento, tuning e valutazione di modelli della famiglia YOLO12 per il rileva-
mento dei segnali stradali. L’obiettivo ¢ individuare la configurazione piu bilanciata
in termini di accuratezza e velocita di inferenza, al fine di ottimizzare le prestazioni
del modello in contesti che richiedono elaborazione in tempo reale.

Architetture analizzate e dataset

Il lavoro prevede I'addestramento e ’analisi comparativa di tre versioni del modello
appartenenti alla famiglia YOLO12: le varianti YOLO12n (nano), YOLO12s (small)
e YOLO12m (medium). L’intero processo si basa su un dataset personalizzato,



realizzato appositamente per questo progetto e costruito in modo da garantire una
distribuzione rappresentativa delle diverse classi di segnali.

Per confrontare le prestazioni dei modelli sono state utilizzate un insieme di me-
triche ampiamente adottate nel campo dell’object detection, quali la Precision, il Re-
call, la mean Average Precision calcolata a differenti soglie di Intersection over Union
(IoU), I'F1-Score e il tempo medio di inferenza per frame, parametri fondamentali
per stimare I’equilibrio tra accuratezza e velocita di elaborazione.

Strategia di training

Il training viene effettuato attraverso tecniche di transfer learning, partendo da
pesi pre-addestrati su dataset di larga scala e adattandoli al dominio specifico dei
segnali stradali attraverso fine-tuning esteso. Sono state usate inoltre tecniche di
data augmentation per migliorare la capacita di generalizzazione dei modelli.

Analisi qualitativa delle predizioni

Oltre alle metriche quantitative, é stata condotta un’analisi qualitativa dei risultati
ottenuti dai modelli YOLQO, con particolare attenzione alle differenze tra le varianti
utilizzate. Questa fase ha previsto ’osservazione diretta delle predizioni generate su
campioni rappresentativi del dataset, al fine di individuare comportamenti ricorren-
ti, errori tipici e punti di forza di ciascun modello. Attraverso il confronto visivo
delle bounding box, dei falsi positivi e delle mancate rilevazioni, & stato possibile
comprendere meglio le metriche numeriche e valutare I'effettiva capacita dei modelli
di generalizzare in condizioni reali. L’obiettivo di questa analisi ¢ stato quindi quello
di integrare i risultati quantitativi con un riscontro qualitativo, fornendo una visione

pit completa delle prestazioni e del comportamento pratico delle diverse architetture
di YOLO.

Indicazioni per scenari applicativi

I risultati ottenuti consentono di trarre alcune indicazioni utili per 'applicazione
dei modelli in diversi contesti operativi. Nei sistemi embedded o real-time, in cui la
rapidita di elaborazione rappresenta un requisito prioritario, le varianti piu leggere
come YOLO12n e YOLO12s costituiscono la soluzione piu adeguata, offrendo un
buon compromesso tra accuratezza e velocita anche su dispositivi con risorse limita-
te. In contesti con maggiore potenza di calcolo, modelli come YOLO12m risultano
invece piu indicati, grazie a una precisione di rilevamento superiore, vantaggiosa in
applicazioni dove € richiesta una predizione pitl accurata.



Capitolo 2

Stato dell’Arte

2.1 Panoramica sul’Object Detection

L’object detection ¢ una tecnica della computer vision che impiega le convolutional
neural networks (CNN) per individuare e classificare oggetti presenti in immagini o
sequenze video. In quanto tale mira a riprodurre le capacitd umane di riconoscere
e distinguere gli elementi visivi, assegnandoli a specifiche categorie semantiche. La
localizzazione consente di determinare con precisione la posizione di ciascun ogget-
to, generalmente rappresentata tramite un bounding box rettangolare definito da
coordinate nell’immagine, mentre la classificazione stabilisce la categoria di appar-
tenenza dell’oggetto rilevato. L’object detection unisce dunque entrambi gli aspetti,
consentendo di stimare simultaneamente la posizione e la tipologia delle istanze di
oggetti presenti nella scena.

Categorie di approcci

L’evoluzione delle tecniche di object detection nel contesto del deep learning puo es-
sere suddivisa in due macro-categorie caratterizzate da approcci architetturali fonda-
mentalmente diversi. I metodi two-stage operano attraverso un processo sequenziale
in cui viene prima generato un insieme di regioni candidate e successivamente cia-
scuna regione viene classificata e raffinata. I metodi one-stage effettuano detection
e classificazione in un’unica passata attraverso la rete neurale, eliminando la fase
esplicita di generazione delle proposte.

Metodi two-stage

I metodi two-stage hanno rappresentato per diversi anni lo standard di riferimento
nell’object detection, grazie all’elevata accuratezza ottenuta. La famiglia R-CNN,
introdotta da Girshick nel 2014, ha segnato un punto di svolta nell'impiego delle
reti neurali convoluzionali profonde per questo compito. Nei modelli two-stage,
I'intero processo di rilevamento avviene in due passaggi principali: una prima rete
identifica regioni candidate che potrebbero contenere oggetti, mentre una seconda
fase si occupa della classificazione e del raffinamento dei bounding box. Nonostante
Ielevata precisione, la complessita e i tempi di elaborazione elevati li rendono poco
adatti a contesti real-time, favorendo la diffusione dei metodi one-stage.



Metodi one-stage

Gli approcci one-stage sono stati concepiti per ridurre la complessita dei modelli
two-stage e migliorare la velocita di inferenza. Invece di generare e analizzare espli-
citamente regioni candidate, questi metodi suddividono I'immagine in una griglia e
predicono simultaneamente le coordinate dei bounding box e le relative probabilita
di classe. Soluzioni come SSD e YOLO hanno dimostrato che é possibile mante-
nere buoni livelli di accuratezza riducendo drasticamente i tempi di elaborazione,
rendendo tali architetture ideali per applicazioni in tempo reale.

Miglioramenti nei metodi one-stage

Numerosi contributi hanno progressivamente ridotto il divario prestazionale tra i due
approcci. Architetture come RetinaNet hanno introdotto funzioni di perdita avan-
zate, come la focal loss, per gestire lo shilanciamento tra esempi positivi e negativi,
migliorando la stabilita e la precisione del training. Le evoluzioni successive della
famiglia YOLO hanno a loro volta integrato varianti di queste strategie, adottan-
do funzioni di perdita focalizzate o adattive per affinare la qualita delle predizioni.
Questi progressi hanno consolidato la rilevanza degli approcci one-stage, che oggi
costituiscono la base dei modelli moderni ad alte prestazioni.

Applicazioni in contesti real-time

Nel contesto dei sistemi avanzati di assistenza alla guida (ADAS) e dei veicoli au-
tonomi, i metodi one-stage rappresentano la soluzione piu adatta grazie alla loro
elevata efficienza computazionale. QQueste applicazioni richiedono ’elaborazione di
flussi video in tempo reale, con frame rate tipicamente pari o superiori a trenta foto-
grammi al secondo, e latenze di inferenza nell’ordine di poche decine di millisecondi
per frame. Solo approcci altamente ottimizzati, come la famiglia YOLO, riescono a
garantire tali prestazioni mantenendo livelli di accuratezza sufficientemente elevati
per contesti safety-critical, dove la tempestivita e 'affidabilita delle decisioni sono
fondamentali.

Figura 2.1: Esempio di rilevamento con YOLO12



2.2 La famiglia YOLO

YOLO ¢ una famiglia di modelli di computer vision in real time, che utilizzano
I’algoritmo di rilevamento degli oggetti "You Only Look Once" sviluppato da Ultra-
lytics, questa famiglia di modelli ha rappresentato una svolta nel campo dell’object
detection, introducendo un’architettura one-stage che ha ridefinito gli standard di
efficienza per le applicazioni in tempo reale. Questo paradigma ha permesso di rag-
giungere un equilibrio ottimale tra accuratezza e velocita di elaborazione, rendendo
YOLO una delle architetture piu utilizzate sia in ambito accademico che industriale.

Architettura One-Stage

Dal momento che YOLO utilizza 'approccio one-stage, unifica I'intero processo
di generazione delle regioni, classificazione e raffinamento in un’unica rete end-to-
end. Questa filosofia architetturale consente di ridurre drasticamente la complessita
computazionale, ottenendo tempi di inferenza nell’ordine di pochi millisecondi e
rendendo 1’object detection applicabile in scenari real-time.

Bounding boxes + confidence

S S grid on input Final detections

Class probability map

Figura 2.2: Rappresentazione concettuale del paradigma You Only Look Once (YO-
LO). 1l processo unificato suddivide 'input in una griglia, genera bounding box e
mappe di probabilita di classe simultaneamente in un unico passaggio.

Il principio fondamentale di YOLO consiste nel riformulare il rilevamento degli
oggetti come un singolo problema di regressione. L’immagine in input viene sud-
divisa in una griglia di celle. Ciascuna cella é responsabile di predire un numero
predefinito di bounding box e le probabilita di appartenenza a una classe per gli
oggetti il cui centro si trova al suo interno. Questo permette di generare tutte le
predizioni simultaneamente con un’unica valutazione della rete.
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Figura 2.3: Architettura YOLOv1. La prima architettura YOLO ha un totale
di 24 livelli convoluzionali con 2 livelli completamente connessi alla fine.

Evoluzione e Struttura Moderna

Dalla sua concezione, la filosofia YOLO si ¢ basata su un’intuizione fondamentale:
riformulare il rilevamento di oggetti come un singolo problema di regressione, eli-
minando la necessita di una fase separata per la generazione di proposte di regioni.
Le versioni precedenti a YOLO12 hanno perfezionato questo approccio attraver-
so architetture interamente basate su Reti Neurali Convoluzionali (CNN) e hanno
consolidato una struttura canonica articolata in tre componenti principali:
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Figura 2.4: Architettura YOLOv4. L’achitettura contenente i tre componenti
principali é stata consolidata a partire dalla versione YOLOv4 e mantenuto nelle
successive

e Backbone: Rappresenta la spina dorsale della rete e agisce come un potente
estrattore di feature gerarchiche. Costituito da una profonda rete convolu-
zionale pre-addestrata su dataset di vasta scala, il suo compito ¢ analizzare
I'immagine in input e apprendere a riconoscere concetti visivi a livelli di astra-
zione crescenti. Gli strati iniziali imparano a identificare feature di basso livel-
lo come bordi e gradienti di colore, mentre gli strati pit profondi combinano
queste informazioni per riconoscere texture, forme complesse e, infine, parti di
oggetti.

e Neck: Questa componente si comporta come un ponte tra il backbone e I’head
di rilevamento. La sua funzione é quella di aggregare e combinare le fea-
ture map estratte a diversi livelli di profondita. Architetture come le Path
Aggregation Networks (PAN) vengono impiegate per fondere informazioni se-
mantiche ad alto livello con dettagli spaziali a risoluzione piu fine, creando
rappresentazioni multi-scala essenziali per rilevare oggetti di dimensioni molto
diverse.



e Head: E la parte finale e decisionale della rete, responsabile della generazione
delle predizioni. Operando sulle feature map aggregate, I’head stima, per ogni
cella della griglia, le coordinate dei bounding box, un punteggio di confidenza
(objectness) e le probabilita di classe. Gli head moderni sono decoupled, ovvero
utilizzano rami distinti per la regressione dei box e la classificazione, e generano
predizioni su pitu scale per ottimizzare il rilevamento di oggetti piccoli, medi
e grandi. Tuttavia, le architetture piti recenti hanno superato il concetto di
una "decoupled head" statica. YOLOv11 ha introdotto un "Dynamic Head
Design", capace di adattare le proprie funzionalita in base alle caratteristiche
dell’input per migliorare ’accuratezza. YOLO12 evolve ulteriormente questo
concetto: la sua "Detection Head" é potenziata da tecnologie all’avanguardia
come FlashAttention e meccanismi di adattamento dinamico.

Questo approccio, pur essendo estremamente efficiente, si affida implicitamente alla
capacita degli strati convoluzionali di apprendere le relazioni spaziali e contestuali
pit rilevanti, un paradigma che YOLO12 ha evoluto attraverso l'integrazione di
meccanismi di attenzione.
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Evoluzione della famiglia YOLO

Scalabilita

Uno dei punti di forza della famiglia YOLO é la sua intrinseca scalabilitd. Per
rispondere alle diverse esigenze applicative, ogni versione dell’architettura viene di-
stribuita in pit varianti, identificate da suffissi come nano (n), small (s), medium
(m), large (1) ed extra-large (x). Queste varianti offrono un trade-off controllato tra
accuratezza e velocita, ottenuto modulando la profondita e la larghezza del modello,
e di conseguenza il numero di parametri. Questa flessibilita permette di seleziona-
re il modello pitt adatto al contesto, da sistemi embedded con risorse limitate che
privilegiano la rapidita (es. YOLO12n) a implementazioni cloud dove la priorita é
massimizzare 'accuratezza (es. YOLO12x).

Funzioni di perdita e strategie di ottimizzazione

Le versioni piu recenti della famiglia YOLO hanno introdotto importanti migliora-
menti anche nelle strategie di addestramento. L’obiettivo é ottimizzare la conver-
genza, stabilizzare il training e migliorare la precisione complessiva del modello.
Dal punto di vista delle funzioni di perdita, le architetture moderne adottano
versioni adattive della IoU Loss, come la CloU e la SIoU, che incorporano infor-
mazioni geometriche aggiuntive (ad esempio la distanza tra i centri e 'allineamento
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angolare dei bounding box) per una regressione piu accurata. Per la classificazio-
ne, sono spesso impiegate funzioni di perdita bilanciate come la Focal Loss o sue
varianti, utili per mitigare lo shilanciamento tra esempi facili e difficili.

Sul piano dell’ottimizzazione, le implementazioni pilt recenti fanno uso dell’algo-
ritmo Stochastic Gradient Descent (SGD) con momentum e strategie come il cosine
learning rate decay, che favoriscono una discesa pit stabile e una migliore generaliz-
zazione. In alcuni casi vengono introdotte tecniche di warm-up iniziale o gradient
clipping per migliorare la stabilita numerica nelle prime fasi di training.

Questi perfezionamenti, uniti alle innovazioni architetturali, hanno contribuito
a rendere YOLO una delle famiglie di modelli piu versatili ed efficienti nell’ambito
dell’object detection moderna.

2.3 Modello YOLO12

La scelta di adottare YOLO12 per il progetto Street Sign Sense é motivata da una
convergenza di fattori tecnici, pratici e strategici che lo rendono la soluzione ottimale
per gli obiettivi prefissati.

Evoluzione Architetturale

Le versioni precedenti di YOLO si basavano quasi esclusivamente su architetture
convoluzionali (CNN) per l'estrazione e 'elaborazione delle feature, YOLO12 segna
un’evoluzione significativa introducendo un design "attention-centric". Come
evidenziato dalla documentazione [3|, questo modello "si discosta dagli approcci
tradizionali basati su CNN", integrando meccanismi di attenzione per migliorare
I’accuratezza senza compromettere la velocita di inferenza.

Un’architettura attention-centric mira a simulare la capacita umana di concen-
trarsi selettivamente sulle parti pitt importanti di una scena visiva. Invece di trattare
tutte le regioni e le feature estratte con la stessa importanza, il meccanismo di at-
tenzione apprende dinamicamente a pesare le informazioni, assegnando maggiore
rilevanza alle aree e alle caratteristiche piu indicative per il compito di rilevamento.

Componenti Architetturali

L’architettura di YOLO12 mantiene la struttura canonica Backbone-Neck-Head, ma
ogni componente ¢ stato riprogettato integrando elementi avanzati:

e Backbone Ottimizzato (Basato su R-ELAN): Il backbone, responsabi-
le dell’estrazione iniziale delle feature, impiega blocchi R-ELAN (Residual
Enhanced Layer Aggregation Network). Questi moduli rappresentano
I’evoluzione diretta delle architetture precedenti, superando i limiti dei moduli
CSPNet (YOLOv4/v5) e ELAN/GELAN (YOLOv7/v9). Migliorano la pre-
cedente architettura ELAN combinando l'efficacia delle connessioni residue,
note per facilitare il training di reti molto profonde, con meccanismi avanzati
di aggregazione delle feature, migliorando ’apprendimento delle dipendenze
spaziali e contestuali. Un’ulteriore ottimizzazione in YOLO12 consiste nel-
la riduzione della profondita dei blocchi impilati (Stacked Blocks Reduction):
rispetto ai tre blocchi tipici delle versioni recenti, YOLO12 ne utilizza uno
solo nell’ultima fase, semplificando I'ottimizzazione e aumentando la velocita
di inferenza, specialmente nei modelli pit profondi.
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Figura 2.5: Confronto tra i moduli di backbone (a): CSPNet, (b) ELAN , (c)
C3K2 (un caso di GELAN) e (d) il nuovo modulo R-ELAN (Residual Efficient
Layer Aggregation Networks) presente nell’architettura di YOLO12.

e Neck Avanzato (Area Attention): Per ottimizzare l'efficienza computa-
zionale, YOLO12 introduce il meccanismo di Area Attention Module. A
differenza di altri approcci di attenzione locale (come Shift Window o Axial
Attention) che possono introdurre overhead, I’Area Attention divide semplice-
mente la feature map in segmenti pitt ampi (tipicamente | = 4, orizzontalmente
o verticalmente). Questo metodo trasforma l’attenzione globale in locale senza
complesse partizioni, preservando un ampio campo recettivo. Grazie a questa
suddivisione, il costo computazionale viene ridotto drasticamente: passando
da 2n?hd a 12n*hd. Con un valore di default [ = 4, il costo diventa (n?hd)/2,
ottimizzando il meccanismo di Multi-Head Attention del 75%. Questo rispar-
mio ¢ reso possibile non riducendo i canali o le head, ma calcolando I'attenzione
su segmenti spaziali ridotti, e mantenendo alta la velocita di esecuzione.

Criss-cross attention Window attention Axial attention Area attention (Ours)

Figura 2.6: Confronto tra i meccanismi alternativi di attenzione locale e I’Area
Attention

e Head Dinamico con FlashAttention: L’head di rilevamento rappresenta
forse I'innovazione piu distintiva. Superando il concetto di "decoupled head"
statica, YOLO12 implementa un Head Dinamico con l'integrazione di Fla-
shAttention, una tecnologia che ottimizza ’accesso alla memoria durante le
operazioni di attenzione, risolvendo uno dei principali colli di bottiglia e col-
mando il divario di velocita con le CNN tradizionali. Inoltre, la rimozione
della codifica posizionale nei livelli di attenzione semplifica ulteriormente
I’architettura, rendendola piu "pulita" ed efficiente senza sacrificare le presta-
zioni nel rilevamento. Questo permette alla rete di focalizzarsi sulle regioni e
sui canali pitt informativi in modo adattivo, migliorando significativamente la
precisione nella localizzazione (regressione dei bounding box) e nella classifi-
cazione, specialmente per oggetti piccoli, parzialmente occlusi o in condizioni
di illuminazione difficili.

e Ottimizzazione Computazionale (MLP Ratio e Operatori): Per bilan-
ciare il carico computazionale tra i meccanismi di attenzione e i blocchi feed-
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forward, il rapporto di espansione del Multi-Layer Perceptron (MLP
Ratio Adjustment) é stato ridotto da 4 (valore comune nei Transformer) a
circa 1.2. Questo evita che I’'MLP domini il tempo di esecuzione. Infine, I’ar-
chitettura fa ampio uso di operatori di convoluzione con batch normalization
anziché layer lineari con layer normalization, sfruttando la maggiore efficien-
za computazionale degli operatori convoluzionali ottimizzati per ’hardware
moderno.

Sinergia tra CNN e Area Attention

L’introduzione dei meccanismi di area attention (A2) non sostituisce le reti
convoluzionali, ma le integra in un’architettura ibrida piu efficace. Gli strati con-
voluzionali (CNN) restano fondamentali per I'estrazione delle feature visive, pro-
ducendo feature map che codificano bordi, texture e forme, sulle quali i moduli di
attenzione operano per identificare le informazioni piu rilevanti, sia a livello spa-
ziale (aree dell'immagine che contengono elementi cruciali), sia a livello di canali
(tipi di feature che risultano piu significative). Questa capacita consente al model-
lo di creare sinergia architetturale tra estrazione e interpretazione delle feature,
permettendogli di comprendere meglio il contesto, gestire occlusioni complesse e di-
stinguere oggetti con caratteristiche simili con maggiore precisione, rappresentando
un vantaggio decisivo rispetto alle architetture precedenti.

Vantaggi Applicativi e Pratici

Oltre all’innovazione architetturale, la scelta di YOLO12 é stata consolidata da una
serie di considerazioni pratiche che ne hanno garantito la fattibilita e la riproducibi-
lita. YOLO12 si posiziona come una soluzione allo stato dell’arte, offrendo un eccel-
lente compromesso tra accuratezza di rilevamento (mAP su MS COCO) ed efficienza
computazionale (Latenza e FLOPs) rispetto ai precedenti modelli Ultralytics.
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Confronto delle prestazioni di YOLO12 con altri modelli Ultralytics

Questa superiorita nel bilanciamento di prestazioni e efficienza si traduce in
benefici concreti:

e Accuratezza Migliorata: I meccanismi di attenzione e 'head dinamico af-
frontano specificamente le sfide del rilevamento nel mondo reale. Le diver-
se varianti del modello permettono di navigare efficacemente il trade-off tra
velocita di inferenza e accuratezza di rilevamento.
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Modello dimensione  mapval Velocita Velocita parametri FLOPs Confronto
(pixel) 50-95 CPU ONNX T4 TensorRT (M) B) (mAP/Velocita)

(ms) (ms)

YOLO12n 640 40.6 - 1.64 2.6 6.5 +2.1%/-9% (vs. YOLOv10n)
YOLO12s 640 48.0 - 261 9.3 214 +0.1%/+42% (vs. RT-DETRv2)
YOLO12m 640 52.5 - 4.86 20.2 67.5 +1.0%/-3% (vs. YOLO11m)
YOLO12I 640 53.7 - 6.77 26.4 88.9 +0.4%/-8% (vs. YOLO11I)
YOLO12x 640 55.2 - 11.79 59.1 199.0 +0.6%/-4% (vs. YOLO11x)

Confronto tra Accuratezza e Velocitd

Efficienza Real-Time: Nei sistemi avanzati di assistenza alla guida (ADAS),
I’elaborazione in tempo reale rappresenta un requisito fondamentale. Cio im-
plica la necessita di processare flussi video a frame rate di almeno 30 fps per
garantire una reattivita adeguata. Nonostante la sua complessita architettura-
le, YOLO12 mantiene il vantaggio principale della famiglia YOLO: la velocita
di inferenza, ¢ in grado di raggiungere throughput superiori ai 60 fps anche
su hardware non specializzato, offrendo un margine di performance essenziale
per l'integrazione in sistemi con vincoli temporali.

Transfer Learning e Fine-Tuning Mirato: La disponibilita di utilizzare
un modello pre-addestrato su un dataset di vasta scala (in questo caso, COCO)
ha permesso di sfruttare efficacemente il transfer learning, per trasferirne
la conoscenza a un compito specifico. Nello specifico, é stata adottata una
strategia di fine-tuning,in cui i pesi pre-addestrati non sono stati utilizza-
ti come un estrattore di feature statico, ma sono stati raffinati continuando
il processo di backpropagation sull’intero modello. Questo approccio ha due
vantaggi strategici: primo, accelera drasticamente la convergenza, riducendo
il tempo di training complessivo; secondo, permette di raggiungere un’accu-
ratezza superiore anche con un dataset di dimensioni moderate, rendendo il
progetto fattibile con le risorse computazionali a disposizione.

Ecosistema di Sviluppo Ultralytics: L’ecosistema di sviluppo fornito da
Ultralytics, astrae gran parte della complessita implementativa, offrendo un
ambiente di lavoro completo e intuitivo, come la possibilita di configurazio-
ne tramite file YAML. Inoltre, il framework integra nativamente il monito-
raggio automatico delle metriche e la visualizzazione dei risultati, fornendo
un feedback immediato sull’andamento del training. Questo ha permesso di
concentrare 'attenzione sugli aspetti metodologici del progetto.

Compatibilita e Accessibilita: L’efficienza di YOLO12 e la sua compatibi-
lita con diversi ambienti di esecuzione, dallo sviluppo su GPU fino ai sistemi
embedded o server di produzione, evidenziano la flessibilita e ’adattabilita a
contesti operativi realistici.

Inoltre, I'integrazione con un ambiente di sviluppo preconfigurato ha favorito
un processo di prototipazione rapido ed efficiente, permettendo di concentrare
I’attenzione sull’analisi del modello e sull’ottimizzazione dei parametri, anziché
sulla gestione delle dipendenze e del sistema.
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Capitolo 3

Metodologia

3.1 Dataset - Street Sign Set

Per questo progetto, ¢ stato realizzato un dataset personalizzato, denominato Street
Sign Set, attraverso un processo iterativo di raccolta, integrazione e annotazione
mirato a rappresentare la variabilita dei segnali stradali in contesti realistici.

Origine e Costruzione

Il dataset Street Sign Set ¢ stato assemblato attraverso un processo mirato di
selezione e integrazione di dati. Come punto di partenza é stato utilizzato un data-
set pubblico disponibile sulla piattaforma Kaggle costituito da circa 4000 immagini.
Questa base iniziale é stata ampliata in modo considerevole, con piu di 3000 nuo-
ve immagini, sia integrando una selezione di immagini di altri dataset presenti su
Kaggle, sia attingendo da altre fonti, per reperire esempi specifici, ottenendo cosi
un totale di oltre 7000 immagini.

Un elemento cruciale e distintivo di questo lavoro é stato 1’arricchimento del
dataset con il materiale raccolto, per compensare la scarsita di esempi delle classi
sottorappresentate. In questa fase é stata svolta I'acquisizione manuale di immagini
da servizi di mappatura stradale e altre fonti pubbliche, attraverso una selezione
qualitativa.

La decisione di creare un dataset dedicato nasce dalla necessita di rappresen-
tare classi meno comuni e da una analisi delle risorse disponibili. Nonostante su
piattaforme come Kaggle esistano diversi dataset dedicati alla segnaletica, questi
presentano diverse limitazioni: molti sono di dimensioni ridotte, non coprono alcune
delle classi di interesse, oppure sono composti prevalentemente da immagini sinte-
tiche o vettoriali, prive della complessita visiva dell’ambiente stradale. Lo Street
Sign Set, con 63 classi e la focalizzazione su contesti reali, é stato concepito proprio
per colmare questo vuoto, offrendo una rappresentazione piti completa rispetto alle
alternative gia presenti.

Il processo di costruzione ¢ stato iterativo, cioé le immagini sono state aggiunte
progressivamente in base alle necessita rilevate dalle analisi delle performance dei
modelli durante fasi di training e di test, mirando a rafforzare le classi o le condizioni
in cui si osservavano maggiori difficolta nel rilevamento.

14



Formato e Annotazioni

Il dataset adotta lo standard di annotazione YOLO. A ogni immagine sorgente &
associato un file di testo (.txt) con lo stesso filename. Ogni riga del file di testo
contiene I'identificatore (indice) della classe seguito dalle coordinate normalizzate del
bounding box (Zeentros Yeentros laTghezza, altezza) . La fase di etichettatura manuale
é stata condotta sulla piattaforma Roboflow, che ha permesso di definire bounding
box precisi. Tuttavia, data la diversita delle fonti originali, per garantire l'integrita
strutturale del dataset, ¢ stato necessario sviluppare ed eseguire una serie di script
Python dedicati al pre-processing e alla normalizzazione dei dati. Questi script
hanno svolto funzioni di data curation:

e Mapping delle classi per rimappare etichette provenienti da fonti diverse e
ottenere uno schema unificato con le 63 classi.

e Filtraggio delle classi per rimuovere specifiche annotazioni.

e (estione dei file per gestire i file correttamente in modo da garantire struttura
e file consistenti e conformi ai requisiti del framework.

e Rinomina dei file per ottenere filename con uno schema logico definito utiliz-
zando il nome della classe e il progressivo (nome_classe-n. jpg).

e Analisi del dataset per analizzare le occorrenze di ogni singola classe e la loro
distribuzione nei vari split (training, validation, test).

Dimensioni e Distribuzione

La versione finale del dataset Street Sign Set é costituita da un totale di oltre 7300
immagini. La ripartizione dei dati ¢ stata pianificata strategicamente: il training set
conta 5467 immagini e il validation set 1746, con un rapporto di 74% e 24%. . Il test
set é stato intenzionalmente mantenuto di dimensioni contenute, comprendendo 160
immagini; questa scelta deriva dalla volonta di concentrare la quasi totalita delle
risorse disponibili nella costituzione di set di addestramento e validazione partico-
larmente robusti e variegati, massimizzando cosi la capacita di apprendimento del
modello.

Analizzando la distribuzione a livello di singole annotazioni (bounding bozes), su
un totale complessivo di 12.170 istanze etichettate, il dataset risulta cosi struttu-
rato:

e Training Set: 8996 annotazioni (= 73.92%);
e Validation Set: 2886 annotazioni (= 23.71%);

e Test Set: 288 annotazioni (= 2.37%).
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Figura 3.1: Istogramma del numero di classi annotate in ogni immagine

Classi del Dataset

Il dataset comprende 63 classi distinte di segnali stradali, tra queste ci sono 23 classi
che sono state identificate come target primari per 'analisi delle performance. Le
23 classi principali riguardano la segnaletica di:

e Limiti di velocita (14 classi, es. 5-130 km /h).

e Segnali di divieto (4 classi, es. divieto di sosta/fermata, divieto di sorpasso
auto/camion).

e Segnali di precedenza (2 classi, es. dare precedenza e stop).

e Curve e attraversamenti.(3 classi, es, curva pericolosa a destra/sinistra,
attraversamento pedonale)

Data Augmentation

Per mitigare lo sbilanciamento nella frequenza delle diverse classi, é stata implemen-
tata data augmentation selettiva per classi sottorappresentate. Le trasformazioni
includevano:

Grayscale: Apply to 23% of images;

Hue: Between -102° and +102;

Saturation: Between -40% and +40%;

Brightness: Between -25% and +25%:

Blur: Up to 4.5px;

Noise: Up to 2.7% of pixels;
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Analisi della Distribuzione Spaziale

Un aspetto importante nella validazione del dataset riguarda la distribuzione spa-
ziale degli oggetti di interesse. La Annotation Heat Map (Figura 3.2) offre una
rappresentazione visiva della densita delle annotazioni, dove le sfumature di colo-
re indicano la frequenza con cui i bounding box appaiono in specifiche celle della
griglia dell'immagine. In un contesto di guida reale, si ha una concentrazione na-
turale dei segnali in determinate aree (tipicamente ai bordi della carreggiata o in
alto), proprio come dimostrato dalla heatmap che nonostante ¢ ben distribuita, in-
dica che il maggior numero delle annotazioni é localizzato nel nella parte destra e
nella fascia superiore dell’immagine. Una distribuzione eccessivamente polarizzata
potrebbe introdurre un bias posizionale nel modello, portandolo a ignorare a priori
le zone dell'immagine dove i segnali appaiono piu raramente. L’analisi di questa
mappa permette di verificare se occorre adottare una strategia di Data Augmen-
tation. Tecniche come il Mosaic e le trasformazioni prospettiche casuali(Ritaglio
casuale, Rotazione, Capovolgimento, ecc.) sono utili proprio per contrastare questo
fenomeno, rendendo le feature invarianti rispetto alla posizione.

Legend (# of Annotations Per Grid) &

Figura 3.2: Annotation Heat Map del dataset: visualizzazione della densita posizio-
nale dei bounding box.

3.2 Ambiente di Sviluppo

L’intero processo di sviluppo, addestramento e validazione dei modelli ¢ stato ese-
guito sull’ambiente computazionale Kaggle Notebooks. Scelta motivata dalla
combinazione di accessibilita, potenza computazionale e riproducibilita che offre.

Hardware e Cloud

Kaggle offre accesso completamente gratuito a sessioni di calcolo con acceleratori
GPU NVIDIA Tesla T4. In ogni sessione sono state sfruttate due GPU T4 in
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parallelo, permettendo di accelerare il processo di training e distribuire il carico
computazionale tra le due unita.

Le GPU T4, offrono 16GB di memoria ciascuna e sono ottimizzate per inferenza
e training di reti neurali. Queste risorse sono state sfruttate automaticamente dal
framework Ultralytics per ridurre i tempi di training.

La possibilita di eseguire sessioni di commit in cui notebooks vengono eseguiti
in background nel cloud, ¢é stata fondamentale, per gestire il training dei modelli
senza la necessita di mantenere attive le sessioni interattive.

La configurazione hardware include anche 30GB di RAM di sistema e 4 core
CPU Intel Xeon, risorse sufficienti per le operazioni di preprocessing dei dati e di
input output necessarie per alimentare continuamente le GPU con batch di dati.

Stack Software e Framework

L’interfaccia di sviluppo utilizzata da Kaggle ¢ Jupyter Notebook, che ha permesso
I’esecuzione delle celle di codice Python e celle di markdown per la documentazione,
semplificando le fasi del progetto, dalla configurazione alla valutazione. . [L’ambien-
te preconfigurato di Kaggle, basato su Linux Ubuntu con CUDA 11.8 e cuDNN, ha
eliminato le complessita della gestione delle dipendenze, ma affidarsi esclusivamente
alle versioni preinstallate nelle piattaforme cloud comporta rischi per la riproduci-
bilita a lungo termine, a causa dei frequenti aggiornamenti automatici delle librerie.
Infatti per garantire la stabilita e assicurare che i risultati siano replicabili indipen-
dentemente dal momento dell’esecuzione, le librerie critiche per il progetto sono state
definite in un file requirements.txt, richiedendo in questo modo l'installazione di
versioni specifiche.
L’installazione delle dipendenze viene eseguita all’avvio nel seguente modo:

'pip -r /kaggle/input/sssrequirements/requirements.txt

Il file di configurazione, fissa le versioni del framework Ultralytics (per 1’archi-
tettura YOLO), di OpenCV (per la manipolazione delle immagini) e delle librerie
di supporto, eliminando potenziali incompatibilita future.

requirements. tzt

ipython==7.34.0
opencv_contrib_python==4.10.0.84
opencv_python==4.10.0.84
opencv_python_headless==4.10.0.84
Pillow==11.3.0

PyYAML==6.0.3
ultralytics==8.3.229

Librerie standard come OpenCV, NumPy e Matplotlib sono state ivece utilizzate
per il preprocessing delle immagini, le manipolazioni numeriche e la visualizzazione
dei risultati.

3.3 Fase di Addestramento

Strategia di Transfer Learning e Fine-Tuning

Come discusso nel Capitolo 2, 'addestramento si & basato sul transfer learning. Sono
stati utilizzati i pesi pre-addestrati sul dataset COCO forniti da Ultralytics come
punto di partenza. L’intero modello (backbone, neck e head) é stato poi sottoposto
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a fine-tuning sul dataset Street Sign Set, permettendo alla rete di adattare le feature
apprese sul dataset generico al dominio specifico dei segnali stradali.

Configurazione, Ottimizzazione ed Early Stopping

Il processo di addestramento é stato configurato tramite Python e il framework
Ultralytics, definendo parametri specifici del training e passandoli direttamente alla
funzione di avvio. Mentre la definizione della struttura del dataset (percorsi e classi)
é stata delegata al file di configurazione data.yaml.

I parametri principali sono :

e Epoche: L’addestramento ¢ stato eseguito con un numero fissato a 600 epoche
massimo.

e Early stopping: F stato attivato un meccanismo di early stopping con una
patience di 100 epoche. Questo significa che il training si interrompe auto-
maticamente se le metriche di performance, in particolare la mAP@50-95 (o la
fitness complessiva), non mostrano miglioramenti per 100 epoche consecutive.

e Optimizer: E stato utilizzato I'ottimizzatore Stochastic Gradient Descent
(SGD) con momentum (valore di default, 0.9).

e Learning rate: Il learning rate iniziale ¢ stato impostato a 0.01 con una
fase di warmup lineare seguito da cosine annealing schedule che riduce
il learning rate durante il resto del training per favorire la convergenza verso
un minimo ottimale.

e Dimensioni Immagine: Tutte le immagini sono ridimensionate a 640x640
pixel prima di essere fornite alla rete, una dimensione standard che offre un
buon compromesso tra dettaglio e carico computazionale.

e Batch Size Differenziato: La dimensione del batch ¢ stata adattata per
ogni variante modello addestrato. Le varianti, quando vengono caricate sulle
GPU occupano differenti quantita di memoria, dunque questo influisce sullo
spazio che resta disponibile per il caricamento delle immagini del batch. Per
cui al fine di massimizzare 1'utilizzo delle GPU disponibili (2x NVIDIA T4) i
batch size per ogni variante sono stati impostati in questo modo:

— YOLO12n: 140 immagini per step (70 per GPU).
— YOLO12s: 80 immagini per step (40 per GPU).
— YOLO12m: 40 immagini per step (20 per GPU).

Questi settaggi hanno permesso di sfruttare al massimo le risorse computazio-
nali delle GPU per ciascuna variante del modello, ottimizzando notevolmente
i tempi di training evitando sprechi di risorse o errori di Out-of-Memory.

e Gestione Augmentation: Parametro fliplr Il parametro di data aug-
mentation relativo al ribaltamento orizzontale (fliplr), nella configurazio-
ne dell’addestramento, é stato fissato a 0.0. Questa decisione é motivata
dalla natura asimmetrica delle classi target (es. segnaletica direzionale): il
ribaltamento orizzontale dell'immagine avrebbe alterato il significato seman-
tico della classe (trasformando, ad esempio, una indicazione "sinistra" in "de-
stra"), compromettendo la capacita del modello di distinguere correttamente
lorientamento degli oggetti.
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L’implementazione pratica di questa configurazione ¢é riportata nei codici a seguire,
dove si evidenzia anche I'impostazione esplicita per 'utilizzo parallelo delle GPU.

model = (’yolol2n.pt?)

results = model. (
data=’data.yaml’,
imgsz=640,
epochs=600,
patience=100,
save_period=50,
device=’0,1"7,
batch=140,
fliplr=0.0,
name=’yolol2n_run’,
project=’streetsignsense’

model = (’yolol2s.pt?)

results = model. (
data=’data.yaml’,
imgsz=640,
epochs=600,
patience=100,
save_period=50,
name=’yolol2s_run’,
project=’streetsignsense’,
device=’0,1",
batch=80,
fliplr=0.0

model = (’yolol2m.pt?)

results = model. (
data=’data.yaml’,
imgsz=640,
epochs=600,
patience=100,
save_period=50,
name=’yolol2m_run’,
project=’streetsignsense’,
device=’0,1"7,
batch=40,
fliplr=0.0

Tempi di Addestramento Effettivi e Gestione delle Risorse

L’addestramento € stato configurato per estendersi fino a un massimo di 600 epoche,
integrando il meccanismo di early stopping nativo del framework Ultralytics con una
patience impostata a 100 epoche. L’obiettivo dell’early stopping ¢ interrompere il
processo qualora non si osservassero miglioramenti tangibili sulle metriche di valida-
zione, in questo caso la soglia di epoche senza miglioramenti é stata impostata per
100 epoche consecutive, ottimizzando cosi 'uso delle risorse.
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L’esecuzione sull’ambiente Kaggle (2x NVIDIA T4) ha permesso di misurare i
tempi di esecuzione; le dinamiche di arresto specifiche per ciascun modello sono
riportate di seguito:

e YOLOv12n: Il modello nano ha impiegato un runtime di 5h 38m 40s. Il mec-
canismo di early stopping ¢ intervenuto correttamente, arrestando il training
all’epoca 361. Il checkpoint finale con le prestazioni ottimali é stato dunque
registrato all’epoca 261.

e YOLOv12s: La variante small ha richiesto un runtime di 7h 4m 25s, con
I'early stopping che ha determinato la convergenza ottimale all’epoca 170,
arrestando infatti ’addestramento all’epoca 270, considerata la mancanza di
miglioramenti nelle ultime 100 epoche.

e YOLOv12m: La variante medium, caratterizzata da una maggiore comples-
sita computazionale, ha richiesto una strategia di training suddivisa in due
sessioni, per rispettare i vincoli di runtime della piattaforma Kaggle (limite di
12 ore consecutive). Il processo complessivo ha impiegato un tempo totale di
13h 23m 53s.

Nella prima sessione, ’addestramento si é interrotto forzatamente allo scadere
della quota oraria disponibile, raggiungendo ’epoca 262. Un’analisi del file di
log (results.csv) ha permesso di identificare il picco di performance all’epoca
187, con una mAP@50-95 pari a 0.81.

Per verificare I’eventuale presenza di margini di miglioramento, é stata avviata
una seconda sessione impostando una patience ridotta a 25 epoche. Tuttavia, il
meccanismo di early stopping non ¢ intervenuto alla soglia prevista, portando
il training a proseguire fino all’epoca 291. Il monitoraggio in tempo reale
delle metriche ha evidenziato una stagnazione delle prestazioni, con valori
di mAP@50-95 oscillanti intorno a 0.80, inferiori al picco precedentemente
registrato. Di conseguenza, I'addestramento e stato interrotto manualmente
per evitare un inutile dispendio di risorse. Il sistema di checkpointing ha
comunque garantito il salvataggio dei pesi ottimali corrispondenti all’epoca
187 (best.pt), scartando le iterazioni successive.

Data Augmentation Online

La Data Augmentation Online viene effettuata ad ogni batch durante il training a
differenza dell’augmentation offline, che viene applicata selettivamente sulle classi
sottorappresentate per mitigarne lo sbilanciamento. A gestire questo tipo di aug-
mentation é il framework Ultralytics che ha applicato queste trasformazioni diretta-
mente in memoria GPU prima del forward pass. Questo permette di migliorare la
capacita di generalizzazione del modello a nuovi contesti visivi.

La strategia di augmentation online ¢é stata strutturata su tre livelli complemen-
tari: trasformazioni geometriche, variazioni cromatiche e filtri di image processing
tramite librerie esterne.

1. Augmentation Geometrica e Strutturale (Nativa)

Queste trasformazioni modificano la disposizione spaziale e la struttura delle imma-
gini per rendere il modello invariante alla posizione e alla scala:
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e Mosaic: Il Mosaic é applicato con probabilita 1.0, ed ¢ una tecnica impor-
tante di YOLO. Consiste nel fondere quattro immagini di training in un unico
mosaico, costringendo il modello a riconoscere oggetti in contesti non usuali e
migliorando le performance su oggetti pitt piccoli.

e Trasformazioni Affini: Sono state applicate variazioni di scala (£50%,
scale=0.5).

e Translation: £10% di traslazione, (translate=0.1).

e Flip Orizzontale: Questa trasformazione é stata intenzionalmente disabi-
litata (f1iplr=0.0). A differenza di altri domini, nella segnaletica stradale la
direzione é una caratteristica semantica distintiva; applicare un ribaltamento
orizzontale altererebbe il significato del segnale (es. trasformando un "Obbli-
go di svolta a sinistra" in "Obbligo di svolta a destra") causando possibile
confusione tra le classi.

e Random Erasing: Con una probabilita del 40% (erasing=0.4), vengono
cancellate casualmente porzioni dell’immagine. Questa tecnica simula le oc-
clusioni (es. segnali coperti da vegetazione o pali), aumentando le capacita del
modello a riconoscere segnali coperti.

2. Augmentation Cromatica (Spazio HSV)

Per garantire robustezza contro le diverse condizioni di illuminazione (sole, om-
bra, crepuscolo), sono state introdotte modifiche nello spazio colore HSV (Hue,
Saturation, Value):

e Saturazione (hsv_s=0.7): Una variazione del £70% sulla saturazione per-
mette al modello di generalizzare su segnali sbiaditi o estremamente vividi.

e Luminosita (hsv_v=0.4): Una variazione del £40% di luminosita, simula
diverse condizioni di esposizione solare.

e Tonalita (hsv_h=0.015): Una variazione dell’1.5% sulla tonalita preserva la
semantica del colore (es. il rosso deve restare rosso) ma introduce variabilita
realistica.

3. Integrazione con Albumentations

Il framework é configurato per utilizzare anche la libreria Albumentations per ap-
plicare filtri di image processing specifici con una probabilita dell’1% (p = 0.01)
ciascuno. Sebbene rari, questi filtri agiscono come regolarizzatori fini:

e Blur e MedianBlur: Introducono sfocature (raggio 3-7px) per simulare
motion blur o difetti di messa a fuoco.

e CLAHE: L’equalizzazione adattiva dell’istogramma migliora il contrasto lo-
cale, utile per segnali in ombra.

e ToGray: Converte I'immagine in scala di grigi, forzando il modello a ricono-
scere le forme indipendentemente dal colore.
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Monitoraggio Durante il Training

Il framework Ultralytics ha fornito un monitoraggio delle prestazioni durante 1’adde-
stramento. Per ogni epoca, sono state registrate le metriche calcolate sul validation
set: Precision, Recall, mean Average Precision mAP@50 e mAP@50-95,
le tre componenti della loss function: box loss, errore nella regressione dei boun-
ding box; cls_loss, errore di classificazione; dfl_loss, errore nella localizzazione dei
bounding box intorno alla loro posizione reale, (Distribution Focal Loss). Per ogni
variante addestrata, sono stati generati i grafici con tali metriche (si vedano le Figu-
re 3.3, 3.4 e 3.5). I dati relativi a queste metriche sono stati archiviati nei rispettivi
file results.csv, consentendo successive analisi. In particolare, attraverso una
comparazione delle curve di loss, € possibile osservare che le tre varianti hanno un
comportamento di convergenza simile durante il training, pur con velocita e valori
finali differenti (si vedano le Figure C.1, C.2 e C.3 nell’Appendice C).
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Capitolo 4

Risultati e Analisi

In questo capitolo vengono presentati e discussi i risultati sperimentali ottenuti dal-
I'addestramento dei modelli YOLOv12 sul dataset Street Sign Sense. L’analisi si
articola in una valutazione quantitativa, basata sulle metriche standard di object
detection, e in un’analisi qualitativa volta a esaminare il comportamento dei modelli
in scenari reali.

4.1 Metriche di Valutazione

Per garantire una valutazione rigorosa e comparabile delle prestazioni, sono state
adottate le metriche standard consolidate nel campo dell’object detection. Ciascuna
di queste metriche fornisce informazioni specifiche su aspetti diversi delle capacita
del sistema, e la loro analisi congiunta permette di sviluppare una comprensione
completa delle prestazioni effettive dei modelli

e Precision (P): Indica 'affidabilita delle predizioni positive. Rappresenta
la frazione di rilevamenti corretti rispetto al totale dei rilevamenti effettuati,

... 7p
Precision = TPLFD-

In termini operativi, questa metrica risponde alla domanda: tra tutti gli og-
getti che il modello ha classificato come positivi, quanti lo erano davvero? Una
precision elevata implica un basso numero di falsi positivi, caratteristica estre-
mamente desiderabile in applicazioni di assistenza alla guida dove detection
errate potrebbero causare comportamenti pericolosi del sistema e ridurre la
fiducia dell’utente.

e Recall (R): Misura la capacita del modello di trovare tutti gli oggetti rilevanti.
Rappresenta la frazione di oggetti reali correttamente identificati rispetto al

totale degli oggetti presenti nel dataset, Recall = TPTJF%.

Dal punto di vista applicativo, questa metrica risponde alla domanda: tra tutti
i casi realmente positivi, quanti ne ha trovati il modello? Un Recall elevato
indica che il modello non perde oggetti di interesse, aspetto assolutamente
cruciale per applicazioni safety-critical dove la mancata detection di un segnale
di stop o di un limite di velocita potrebbe avere conseguenze estremamente
gravi per la sicurezza.

La metrica piu completa e informativa per valutare sistemi di object detection ¢ la
mean Average Precision che integra informazioni su Precision e Recall, su tutto lo
spettro di soglie di confidenza possibili.
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Il calcolo della mean Average Precision inizia con la costruzione della curva
Precision-Recall per ciascuna classe, ottenuta variando la soglia di confidenza e
calcolando Precision e Recall per ciascun valore di soglia. L’area sotto la curva
Precision-Recall ¢ definita come Average Precision. La mean Average Precision ¢ poi
calcolata come media aritmetica delle Average Precision su tutte le classi presenti
nel dataset.

Nel contesto specifico di YOLO e pitl in generale dell’object detection, & prassi
consolidata considerare due varianti della mean Average Precision basate su criteri
diversi per determinare quando una detection debba essere considerata corretta.
Una detection viene considerata True Positive se I'intersezione (IoU) tra il bounding
box predetto e il ground truth supera una certa soglia prestabilita. L’Intersection
over Union é definita come il rapporto tra ’area di intersezione dei due boxes e 'area
della loro unione, fornendo una misura naturale e intuitiva di quanto accuratamente
il box predetto copre l'oggetto reale.

e mAP@50 (mAP a IoU 0.5): E la media delle precisioni medie (AP) calco-
lata per tutte le classi, considerando una predizione corretta se 'intersezione
sull’'unione (IoU) con il ground truth ¢ almeno del 50%. Questa metrica ¢
indicativa della capacita del modello di localizzare correttamente gli oggetti in
modo "generale".

e mAP@50-95: Considerata la metrica pia robusta e completa (standard CO-
CO), calcola la media delle mAP su diverse soglie di IoU (da 0.50 a 0.95 con
incrementi di 0.05). Premia i modelli che non solo individuano 'oggetto, ma
lo localizzano con estrema precisione geometrica.

e F1-Score: Fornisce una misura armonica che bilancia Precision e Recall, un
singolo valore che sintetizza ’equilibrio tra la capacita di non generare falsi
positivi e quella di non perdere oggetti (falsi negativi). L'F1-Score é calco-
lato nel seguente modo: Fy = 2 . LredsionBecall (O acta metrica risulta utile

) ) Precision+Recall o )
quando si cerca una configurazione bilanciata che non privilegi nessuna delle
due metriche, ma piuttosto ottimizzi il compromesso tra le due. L’F1-Score

raggiunge il suo valore massimo quando entrambe le metriche sono elevate e

perfettamente bilanciate.

e Tempo di Inferenza: Il tempo medio necessario al modello per processa-
re una singola immagine, misurato in millisecondi (ms). I un indicatore per
valutare I'applicabilita pratica del sistema in scenari real-time. Da questa me-
trica é possibile ottenere il frame rate teorico (FPS) raggiungibile dal modello,
FPS = Tempo @ %ggenza ) Per applicazioni che operano tipicamente a trenta
frame per secondo, il tempo di inferenza deve essere inferiore a 33 millisecondi
per frame per garantire elaborazione in tempo reale senza introdurre latenze

inaccettabili.

4.2 Risultati Quantitativi

La Tabella sottostante riassume le prestazioni finali ottenute dalle tre varianti di
YOLO12 (Nano, Small, Medium) sul validation set. I valori riportati si riferiscono
al miglior checkpoint (best.pt) salvato durante il training.

25



Modello  Precision Recall F1-Score mAP@50 mAP@50-95 Inferenza (ms)* Dimensione

YOLO12n 0.849 0.819 0.825 0.870 0.760 5.4 5.32 MB
YOLO12s 0.887 0.846 0.853 0.904 0.796 12.6 18.1 MB
YOLO12m 0.882 0.859 0.856 0.916 0.811 31.7 77.6 MB

Confronto delle prestazioni dei modelli YOLO12.

*Tempi di inferenza misurati su GPU NVIDIA T4

Analisi Comparativa

I dati evidenziano un chiaro trade-off tra complessita computazionale e accuratezza,
tipico delle architetture di deep learning, ma con alcune specificita interessanti legate
all’architettura YOLO12.

YOLO12n: Efficienza

La variante Nano si distingue per la sua straordinaria leggerezza. Con un peso di soli
5.32 MB e un tempo di inferenza di appena 5.4 ms (corrispondenti a un throughput
teorico di circa 185 FPS), ¢ la scelta ideale per dispositivi edge con risorse limitate.
La velocita non compromette la qualita: una mAP@50-95 di 0.760 e un F1-Score di
0.825 indicano che il modello ¢ pienamente capace di gestire la complessita del task, e
sebbene le metriche di accuratezza siano le piu basse del gruppo, il modello mantiene
comunque una precisione media superiore all’84% (Average Precision di 0.849) e una
Recall di 0.819 superando ampiamente 1’80%, dimostrandosi abbastanza capace per
la sua taglia.

YOLO12s: 11 Compromesso Bilanciato

Il modello Small emerge come la configurazione pitt equilibrata, spicca in partico-
lare per la Precision di 0.887, che risulta essere la piu alta tra i tre modelli testati.
Questo suggerisce che é la scelta migliore per minimizzare i falsi positivi. Rispetto
alla variante nano, offre un incremento del 3.6% nella mAP@50-95 salendo cosi a
0.796, e ad un F1-Score che supera la soglia di 0.85. Questo guadagno di accu-
ratezza comporta pero un raddoppio del tempo di inferenza a 12.6 ms e ad una
crescita della dimensione del modello a 18.1 MB. Tuttavia, con circa 79 FPS teorici,
rimane ampiamente nel range del real-time, rappresentando il miglior equilibrio per
applicazioni generali.

YOLO12m: Massima Accuratezza

La variante Medium raggiunge, come previsto, le vette pit alte di accuratezza,
con una mAP@50 di 0.916 e una mAP@50-95 di 0.811. E interessante notare che,
mentre la precisione pura & leggermente inferiore al modello Small (0.838 vs 0.846),
I'elevato Recall a 0.859 indica che ¢é il modello che "perde" meno segnali in assoluto.
Questo indica che il modello Medium riesce a trovare pitl segnali difficili, questo
infatti spiega la mAP complessiva piil alta. Tuttavia, il costo computazionale é
significativo: il modello pesa 77.6 MB (quattro volte la versione Small) e il tempo di
inferenza sale a 31.7 ms (circa 31 FPS). Nonostante sia in grado di operare in real-
time, il margine é molto pit ridotto, rendendolo idoneo solo per hardware dotato di
accelerazione GPU dedicata per garantire la fluidita necessaria.

26



Comparison of mMAP between different models
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Figura 4.1: Confronto grafico delle metriche mAP tra le varianti.
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Dettaglio per Classe: Matrici di Confusione

Le matrici di confusione normalizzate di ciascuna variante del modello, sono utili
per approfondire la distribuzione degli errori tra le 63 classi. Come osservabile nelle
Figure 4.3, 4.4 e 4.5, asse delle ordinate rappresenta le classi reali (True Label),
mentre 1'asse delle ascisse indica le predizioni del modello (Predicted Label).

Una diagonale principale marcata e continua indica un’elevata accuratezza di classi-
ficazione. I valori al di fuori della diagonale evidenziano invece le misclassifications.

e YOLOv12n: Sebbene la diagonale sia ben definita, si nota una maggiore
dispersione (rumore) nelle aree fuori diagonale, in particolare tra classi visiva-
mente simili (es. varianti dei limiti di velocita) e verso la classe background
(falsi negativi), confermando i limiti di capacita del modello piu piccolo.

e YOLOvV12s e YOLOvV12m: All’aumentare della complessita del modello,
la matrice si pulisce progressivamente. Nel modello Medium, la dispersione
fuori diagonale ¢ minima, indicando una capacita superiore nel discriminare
tra feature fini che distinguono segnali della stessa categoria.
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4.3 Analisi Qualitativa

L’ispezione visiva delle predizioni sul test set, incrociata con ’analisi delle matrici
di confusione, ha rivelato un comportamento differente tra i vari modelli. Sebbene
le metriche globali siano positive, ’analisi qualitativa evidenzia come le prestazioni
non siano uniformi, ma variano in funzione della frequenza delle classi nel dataset e
della complessita del segnale.

Capacita di Astrazione

Uno degli aspetti positivi emersi durante i test ¢ la sorprendente robustezza del
modello in condizioni pitt 0 meno critiche.

e Segnali Parziali e Occlusi: I modelli hanno dimostrato di saper rilevare cor-
rettamente segnali anche quando parzialmente tagliati dai bordi dell’immagine
o oscurati da vegetazione o altri veicoli. Questo suggerisce che le reti convo-
luzionali hanno imparato a riconoscere le classi basandosi su feature parziali
piuttosto che necessitare della sagoma intera. Occlusioni che coprono oltre il
50% del segnale vengono rilevate anche dal modello Nano. (Vedi Figura 4.6a)

e Invarianza alla Scala e Distanza: Il sistema riesce a localizzare sia segna-
li molto vicini che occupano una porzione significativa del frame sia oggetti
distanti con un’occupazione di pochi pixel nell’immagine, confermando la ca-
pacita delle reti di estrarre feature su diverse scale spaziali. Un ruolo deter-
minante é stato svolto dall’architettura multi-scala implementata nel Neck e
nell’'Head di YOLO12, che si ¢ dimostrata efficace nella gestione delle variazioni
di dimensione.

e Tolleranza alle Prospettive: La capacita di generalizzazione dei modelli &
stata valutata anche rispetto alle prospettive derivate dall’angolazione degli
scatti. I segnali con angolazioni laterali, anche se non significative, sono state
riconosciuti correttamente.

e Condizioni Ambientali: Inoltre, i segnali vengono individuati con coerenza
sia in condizioni di controluce che in scenari crepuscolari, dimostrando un’ot-
tima invarianza fotometrica. Tuttavia, in presenza di scarsa illuminazione o
contrasti estremi, il confidence score delle predizioni tende a diminuire, pur
mantenendo corretta la localizzazione dell’oggetto. (Vedi Figura 4.6b)

(a) Esempio di segnale occluso a sinistra del-
I'immagine, rilevamento effettuato dal model-  (b) Esempio segnale in condizioni ambien-
lo nano tali con forte contrasto

Figura 4.6
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Impatto della Frequenza delle Classi

Nonostante gli sforzi di bilanciamento e data augmentation, il dataset riflette inevi-
tabilmente la frequenza naturale dei segnali nel mondo reale. L’analisi qualitativa
conferma una correlazione diretta tra la frequenza di una classe nel training set e la
robustezza del rilevamento:

e Classi Frequenti: Segnali pitt comuni vengono rilevati con elevata confidenza
e precisione di localizzazione (bounding box aderenti), anche in condizioni

difficili.

e Classi Sottorappresentate: Per i segnali piu rari, si osserva un calo delle
prestazioni. In questi casi, il modello tende a essere piu incerto (confidence
score bassi) o a mancare del tutto il rilevamento (False Negatives).

Ambiguita e Confusioni Inter-classe

Il sistema dimostra una buona capacita discriminante, evitando generalmente di con-
fondere oggetti simili (come cartelloni pubblicitari rotondi o triangolari) con segnali
stradali. Tuttavia gli errori di classificazione sono presenti. L’analisi delle predizioni
errate rispecchia le criticitd emerse nelle matrici di confusione. Le difficoltd mag-
giori si concentrano su segnali che condividono una forte somiglianza visiva (forma
e colore) ma differiscono per i dettagli interni:

e Limiti di Velocita: Sisono osservate confusioni occasionali tra limiti visivamen-
te simili (es. 80 km/h vs 60 km/h) quando il segnale é distante o la risoluzione
é bassa.

e Spesso, 'aggiustamento della soglia di confidenza per l'inferenza permette di
filtrare queste predizioni errate, ma in alcuni casi ’errore persiste con score
elevati.

I modello cattura correttamente la semantica generale ("é un limite di velocita"), ma
puo fallire nella specifica sottoclasse. Si tratta di errori che, in un contesto operativo,
potrebbero essere mitigati dal tracciamento del segnale su piu frame differenti.

In sintesi, I'analisi qualitativa conferma che il sistema ¢é affidabile per la segnaletica
critica e comune, mostrando una notevole capacita di generalizzazione su segnali
degradati o parziali, seppur con sporadiche confusioni tra sottoclassi o mancate
rilevazioni.
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Capitolo 5

Discussione

5.1 Interpretazione dei Risultati e Scenari Applica-
tivi

L’analisi comparativa delle tre varianti di YOLO12 ha evidenziato come la scelta del
modello non possa prescindere dal contesto applicativo specifico. I dati confermano
che non esiste un vincitore assoluto, ma soluzioni ottimali per vincoli diversi:

e YOLO12n (Edge-First): Con un tempo di inferenza di soli 5.4 ms, que-
sto modello si dimostra la scelta migliore per I'edge computing a bassissimo
consumo, ’opzione praticabile per dispositivi embedded con memorie limita-
te, o per sistemi che richiedono frame rate elevatissimi. Sebbene paghi in
termini di accuratezza sulle classi piu difficili, la sua precisione media resta
sorprendentemente alta per la sua dimensione.

e YOLO12s (Best Balance): Si conferma il punto di equilibrio ideale per la
maggior parte delle applicazioni di assistenza alla guida su hardware standard.
Il guadagno di accuratezza rispetto alla variante nano € tangibile, specialmente
nella riduzione dei falsi positivi (Precision piu alta del gruppo). Preferibile
quindi in sistemi di sicurezza o ADAS dove un falso positivo & fastidioso o
pericoloso (es. frenate fantasma causate da rilevamenti errati). Mantiene
allo stesso tempo una velocita di inferenza pienamente nel range del real-time,
compatibile con i requisiti dei moderni sistemi ADAS, in cui i limiti di memoria
e di consumo energetico sono trascurabili. Sebbene la variante nano sia stata
definita come la pit efficiente per 'edge computing, i suoi 185 FPS diventano
inutili se si necessita un livello di affidabilita superiore e si dispone di hardware
con GPU dedicata.

e YOLO12m (High-Accuracy): Rappresenta la scelta obbligata quando la
priorita ¢ la massimizzazione del Recall e la localizzazione precisa. Con un
tempo medio di inferenza di 31.7 ms, il modello riesce a superare la soglia
del real-time, con un margine estremamente ridotto, e fatica a garantire i 30
FPS stabili richiesti per un video fluido. A differenza delle varianti piu leggere
necessita di hardware dotato di accelerazione GPU dedicata (superiore alla
T4), poiché qualsiasi calo di risorse porterebbe il frame rate sotto la soglia
di fluidita. Rimane comunque la soluzione di riferimento per scenari di Cloud
Computing e di gestione in modalita offline (batch processing), dove la stabilita
degli FPS é secondaria rispetto all’accuratezza del rilevamento.
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5.2 Analisi delle Criticitd Operative

Un aspetto rilevante emerso durante il progetto riguarda la complessita di gestione
del training. L’esperienza con vari addestramenti effettuati con YOLO12m ha
dimostrato che 'affidamento esclusivo agli automatismi del framework come 1’early
stopping puo rivelarsi insufficiente in scenari di training frammentati che richiedono
la ripresa dello stato (resume).

Nello specifico, é stato identificato un comportamento critico legato all’interru-
zione forzata della prima sessione e il successivo riavvio, che hanno comportato il
reset del contatore interno dell’early stopping. Di conseguenza, nella seconda sessio-
ne il conteggio della patience é ripartito da zero. Questo ha impedito all’algoritmo di
arrestare automaticamente il training, che é proseguito fino all’epoca 291 nonostante
il picco di performance (best mAP) fosse stato gia ottenuto all’epoca 187.

Questo evidenzia 'importanza di una supervisione attiva e di un’analisi dei log.
In particolare in progetti complessi distribuiti su piu sessioni, la definizione della
patience e 1 criteri di stop devono essere calibrati tenendo conto non solo della
stabilita delle metriche, ma anche dei meccanismi di reinizializzazione degli stati
interni dell’ottimizzatore al momento del ripristino.

5.3 Limiti del Lavoro

Per garantire una corretta interpretazione dei risultati, & doveroso esplicitare i limiti
metodologici dello studio:

e Rappresentativita del Dataset: Sebbene il dataset Street Sign Set (7000+
immagini) sia abbastanza valido, rimane limitato rispetto ai benchmark di
dataset che contano decine di migliaia di campioni. Lo sbhilanciamento naturale
delle classi , seppur mitigato dall’augmentation, influenza le performance sulle
categorie di segnali pil rari.

e Vincoli Computazionali e Temporali: L’utilizzo di piattaforme cloud per
I’addestramento ha imposto limiti stringenti sul tempo di esecuzione continuo.
Questo vincolo ha impedito un’esplorazione esaustiva dello spazio di ricerca
e ha reso necessario frammentare il training dei modelli pitt complessi, intro-
ducendo sfide operative nella gestione della convergenza e nel ripristino degli
stati.

5.4 Sviluppi Futuri

Alla luce dei risultati e dei limiti discussi, le direzioni future di ricerca dovrebbero
concentrarsi su:

e Consolidamento del Test Set: [’attuale set di test, conta 160 immagini
e 288 annotazioni, concentrato principalmente sulle classi target. Un obiet-
tivo primario sara Pacquisizione di un test set piu ampio (almeno 500-1000
immagini).

e Espansione del Dataset: Acquisizione mirata di nuovi esempi per le classi
di coda (quelle con meno di 100 istanze) per livellare le performance di Recall
tra le diverse categorie.
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e Copertura degli Scenari Critici: Inclusione di scenari meteorologici critici
attualmente assenti (nebbia fitta, neve, pioggia battente) per testare i limiti
di robustezza del modello.

e Prototipazione: Implementazione del modello su un dispositivo edge in-
stallato su un veicolo per valutare le prestazioni sul campo, analizzando la
robustezza rispetto a condizioni non rappresentate nel dataset attuale.

34



Capitolo 6

Demo Web

L’ultima fase del progetto Street Sign Sense ha previsto lo sviluppo di una demo web
per dimostrare l'efficacia e la portabilita dei modelli YOLO12 addestrati. L’obiettivo
era creare un ambiente di inferenza accessibile, capace di operare interamente client-
side (direttamente nel browser dell’utente).

Accesso al Codice e alla Demo Live

Il codice sorgente completo dell’applicazione web e I'implementazione live della de-
mo sono stati resi disponibili pubblicamente, garantendo la piena trasparenza e
riproducibilita del sistema, accessibili ai seguenti indirizzi:

e Repository GitHub:
https://github.com/AlessandroFerrante/StreetSignSense/

e Demo Live (Web Page):
https://alessandroferrante.github.io/StreetSignSense/

6.1 Architettura del Sistema

L’applicazione é stata realizzata come una Single Page Application (SPA), proget-
tata per essere leggera e responsiva. Il sistema é costituito da TensorFlow.js, una
libreria open-source che permette l'esecuzione di modelli di Machine Learning in
JavaScript. La libreria usufruisce della tecnologia WebGL, TensorFlow.js consente
cosl di accelerare i calcoli matriciali necessari per le reti neurali convoluzionali uti-
lizzando la GPU del dispositivo ospite (smartphone, laptop o desktop), rendendo
possibile 'object detection in tempo reale senza hardware dedicato.

6.2 Pipeline di Elaborazione

Il funzionamento della demo segue una pipeline logica, che adatta i vari input alle
specifiche richieste dall’architettura YOLO12.

Conversione e Caricamento del Modello

I modelli addestrati in PyTorch (formato .pt) sono stati convertiti nel forma-
to web_model compatibile con TensorFlow.js (una struttura composta da un file
model. json contenente la topologia del grafo (o architettura della rete) e i file
binari contenenti i pesi).
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L’applicazione permette all’'utente di selezionare quale variante caricare:

e YOLO12n (Nano): Ideale per dispositivi mobili e bassa latenza, privilegia
la velocita.

e YOLO12s (Small): Un buon compromesso tra velocita e precisione.

¢ YOLO12m (Medium): La versione piil accurata, ma necessita di maggiori
risorse hardware.

Il caricamento avviene in modalita asincrona tramite la funzione tf .loadGraphModel,
successivamente viene eseguita un’inferenza su un tensore di zeri per inizializzare gli
shader WebGL e allocare la memoria necessaria.

Pre-processing dell’Input

Le reti neurali richiedono che le immagini abbiano una forma e dimensione specifica
(in questo caso 640 x 640 pixel). Prima di essere analizzata, ogni immagine subisce
le seguenti trasformazioni:

1. Ridimensionamento: L’immagine sorgente (o il frame video) viene ridimen-
sionata mantenendo le proporzioni originali.

2. Padding: Vengono aggiunti i bordi per raggiungere la dimensione target di
input del modello (640 x 640 pixel). Fondamentale per evitare distorsioni che
comprometterebbero la capacita della rete di riconoscere le forme dei segnali.

3. Normalizzazione: I valori dei pixel vengono normalizzati nel range [0,1] e
convertiti in un tensore float a 32 bit, aggiungendo la dimensione del batch
(1 x 640 x 640 x 3).

Inferenza e Risultati

L’inferenza viene eseguita tramite il metodo model.executeAsync. Una volta che
il modello ha analizzato I'immagine, produce un output grezzo (tensori contenen-
ti coordinate dei box, punteggi di confidenza e probabilita delle classi) che viene
elaborato per ottenere i risultati:

e Filtraggio: Vengono scartate le predizioni con un punteggio di confidenza
inferiore alla soglia definita dall’'utente (default 0.40).

e Rescaling: Le coordinate dei bounding box predetti, nell’immagine 640 x 640
(incluso il padding), vengono rimappate per adattarsi all’immagine originale.

e Visualizzazione: I bounding box vengono disegnati attorno ai segnali rico-
nosciuti, etichettandoli con il nome della classe e la percentuale di probabilita.

6.3 Funzionalita e Interfaccia Utente

L’applicazione offre diverse modalita d’uso per testare il modello in vari scenari con
un controllo sui parametri di inferenza.
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Gestione degli Input

Il sistema supporta tre modalita di acquisizione:
e Upload File: Permette di analizzare foto o video salvati sul dispositivo.

e Webcam/Camera: Accesso diretto alla fotocamera per analizzare ’ambiente
in tempo reale, o scattare una foto all’istante.

e Demo Image: Carica diverse immagini di test predefinite, per verificare le

capacita dei modelli.

Pannello di Controllo

L’utente puo interagire in tempo reale con i parametri del modello tramite slider
dedicati:

e Confidence Threshold: Regola la sensibilita del modello.
e ToU Threshold: Aiuta a gestire il filtraggio delle sovrapposizioni.
e Max Detections: Permette di impostare il numero massimo di detection da

visualizzare.

Metriche in Tempo Reale

Per valutare le prestazioni, 'interfaccia mostra:
e FPS: Indicatore della fluidita dello stream.

e Tempo di Inferenza: Tempo in millisecondi per l'inferenza di un singolo
frame.

e Conteggio Oggetti: Numero di segnali rilevati nel frame corrente.

Street Sign Sense

Select Model YOLOI2:

YOLOv12s (Small - Balanced)

10U Threshold

Figura 6.1: Interfaccia Demo Web
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6.4 Considerazioni sulle Prestazioni Web

I test effettuati tramite la demo web confermano le osservazioni del capitolo prece-
dente. La variante nano si dimostra performante su dispositivi standard, garantendo
maggiore fluidita, mentre la variante medium, pur essendo piiul precisa, mostra un
incremento del tempo di inferenza, risultando piu lenta. La variante small confer-
ma la sua posizione, offrendo un’ottima accuratezza e mantenendo un frame rate
accettabile.
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Capitolo 7

Conclusioni

Il progetto Street Sign Sense ¢ nato con l'intento di esplorare 'object detection
applicata alla sicurezza stradale. Al termine dello sviluppo, & possibile affermare
che gli obiettivi prefissati non solo sono stati soddisfatti, ma in diversi aspetti le
aspettative iniziali sono state superate, in particolare per quanto riguarda l'efficienza
operativa dei modelli.

Dal punto di vista applicativo, si puo confermare la fattibile integrazione di ar-
chitetture avanzate come YOLO12 allinterno di sistemi ADAS (Advanced Driver
Assistance Systems). La capacita dei modelli di operare in tempo reale, mante-
nendo un’elevata accuratezza, dimostra che la tecnologia attuale puo supportare
attivamente il conducente, contribuendo alla sicurezza stradale.

Oltre ai risultati tecnici, questo progetto ha rappresentato un’eccellente esperien-
za formativa. Affrontare l'intero ciclo di vita di un sistema di Machine Learning,
dalla raccolta dei dati al deployment, ha permesso di comprendere in profondita
non solo il funzionamento teorico delle Reti Neurali Convoluzionali e dei moder-
ni meccanismi di Attenzione, ma anche le sfide pratiche che caratterizzano questo
ambito.

Un aspetto significativo é stato I'apprendimento derivato dalla gestione diretta
dei dati. Il lavoro di costruzione, pulizia e arricchimento del dataset e I’attenzione
data all’integrazione manuale di oltre 3000 nuove immagini e nelle annotazioni hanno
reso evidente come la qualita sia fondamentale per ogni sistema intelligente efficace.

Inoltre, il progetto é stato fondamentale per mettere in pratica e affinare la ca-
pacita di leggere e interpretare le metriche con piena consapevolezza. Passare dalla
teoria all’analisi critica dei grafici di training e delle matrici ha permesso di svilup-
pare una visione analitica per comprendere non solo quanto un modello performi
bene, ma perché si comporti in un certo modo.

In conclusione, sono pienamente soddisfatto del lavoro svolto, dei risultati tecnici
raggiunti e dall’esperienza derivata. Questo percorso ha consolidato il mio interesse
nel settore, fornendomi le competenze e una visione critica necessarie per progetti
futuri. L’auspicio é che il materiale prodotto in questo studio possa costituire una
base valida per nuovi utilizzi e ulteriori sviluppi.
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Capitolo 8

Riproducibilita e Risorse del
Progetto

Per assicurare la piena trasparenza, accessibilita e riproducibilita del lavoro svolto,
tutti i materiali principali del progetto Street Sign Sense sono stati resi disponibili
pubblicamente.

Il progetto ¢ disponibile sulla piattaforma GitHub (per il codice sorgente e I’ap-
plicazione web) e la piattaforma Kaggle (per il dataset e gli ambienti di training
originali).

e Codice Sorgente e Demo Live (GitHub): Il repository contiene il codice
sorgente per 'addestramento, gli script di analisi e 'implementazione completa
della demo web.

Repository GitHub:
https://github.com/AlessandroFerrante/StreetSignSense/
Demo Web (Pagina GitHub Pages):
http://alessandroferrante.github.io/StreetSignSense/

e Dataset e Ambienti di Training (Kaggle): Il materiale ospitato su Kaggle
garantisce 'accesso diretto all’ambiente di training utilizzato.

Dataset Street Sign Set: Alessandro Ferrante. (2025). Street Sign Set
[Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/8410752

https://www.kaggle.com/datasets/ferrantealessandro/street-sign-set/
Notebooks di Training Originali:
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolol2n
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolol2s
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolol2m
Modelli:
https://www.kaggle.com/models/ferrantealessandro/streetsignsenseyl2n/
https://www.kaggle.com/models/ferrantealessandro/streetsignsenseyl2s/

https://www.kaggle.com/models/ferrantealessandro/streetsignsenseyl2m/
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Appendice A

Elenco Completo delle Classi del
Dataset

Il dataset Street Sign Set comprende le seguenti 63 classi di segnali stradali, come
definite nel file data.yaml:

e prio_give_way: Dare precedenza

e prio_stop: Stop

e prio_priority_road: Strada con diritto di precedenza
e forb_speed_over_5: Limite di velocita 5 km/h

e forb_speed_over_10: Limite di velocita 10 km/h

e forb_speed_over_20: Limite di velocita 20 km/h

e forb_speed_over_30: Limite di velocita 30 km/h

e forb_speed_over_40: Limite di velocita 40 km/h

e forb_speed_over_50: Limite di velocita 50 km/h

e forb_speed_over_60: Limite di velocita 60 km/h

e forb_speed_over_70: Limite di velocita 70 km/h

e forb_speed_over_80: Limite di velocita 80 km/h

e forb_speed_over_90: Limite di velocita 90 km/h

e forb_speed_over_100: Limite di velocita 100 km/h
e forb_speed_over_110: Limite di velocita 110 km/h
e forb_speed_over_120: Limite di velocita 120 km/h
e forb_speed_over_130: Limite di velocita 130 km/h
e forb_no_entry: Divieto di accesso

e forb_no_parking: Divieto di sosta

e forb_no_stopping: Divieto di fermata
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forb_overtake_car: Divieto di sorpasso (auto)
forb_overtake_trucks: Divieto di sorpasso (camion)
forb_trucks: Divieto di transito (camion)
forb_turn_left: Divieto di svoltare a sinistra
forb_turn_right: Divieto di svoltare a destra
forb_weight_over_3.5t: Divieto di transito (peso > 3.5t)
forb_weight_over_7.5t: Divieto di transito (peso > 7.5t)
forb_u_turn: Divieto di inversione a U
info_bus_station: Fermata autobus

info_crosswalk: Attraversamento pedonale (informazione)
info_highway: Inizio autostrada

info_one_way: Senso unico

info_parking: Parcheggio

info_taxi_parking: Parcheggio taxi

warn_children: Pericolo bambini

warn_construction: Lavori in corso

warn_crosswalk: Attraversamento pedonale (pericolo)
warn_cyclists: Pericolo ciclisti

warn_left_curve: Curva a sinistra

warn_right_curve: Curva a destra
warn_domestic_animals: Pericolo animali domestici
warn_other_dangers: Altri pericoli
warn_poor_road_surface: Strada deformata
warn_roundabout: Intersezione con rotatoria
warn_sharp_left_curve: Doppia curva con la prima a sinistra
warn_sharp_right_curve: Doppia curva con la prima a destra
warn_slippery_road: Strada sdrucciolevole

warn_hump: Dosso

warn_traffic_light: Semaforo

warn_tram: Tram

warn_two_way_traffic: Doppio senso di circolazione
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warn_wild_animals: Pericolo animali selvatici
mand_bike_lane: Pista ciclabile

mand_go_left: Obbligo di svoltare a sinistra
mand_go_left_right: Preavviso di direzione obbligatoria sinistra o destra
mand_go_right: Obbligo di svoltare a destra
mand_go_straight: Obbligo di andare dritto
mand_go_straight_left: Direzioni consentite dritto e sinistra
mand_go_straight_right: Direzioni consentite dritto e destra
mand_pass_left: Passaggio obbligatorio a sinistra
mand_pass_left_right: Passaggio consentito a sinistra o destra
mand_pass_right: Passaggio obbligatorio a destra

mand_roundabout: Intersezione con circolazione rotatoria (obbligo)
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Appendice B

Dettagli Ambiente di Sviluppo e
Codice

In questa appendice vengono riportati i dettagli tecnici relativi alla configurazione
dell’ambiente di sviluppo e agli script utilizzati per 'addestramento dei modelli. Il
codice completo, incluse le celle di esecuzione e i log dettagliati, é consultabile anche

nei notebook originali denominati streetsignsense-yolol2n, streetsignsense-yolol2s
e streetsignsense-yolol2m, presenti nella cartella principale del progetto.

B.1 Installazione dipendenze

L’installazione delle dipendenze viene eseguita all’avvio nel seguente modo:

!'pip -r requirements.txt

B.2 Verifica dell’Ambiente

Prima di avviare qualsiasi operazione, é buona norma verificare la corretta confi-
gurazione dell’ambiente e la disponibilita delle risorse hardware (GPU). Il seguente
snippet utilizza le API di Ultralytics per un controllo:

ultralytics
ultralytics. O
ultralytics
yaml
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B.3 Generazione della Configurazione del Dataset

Per garantire la riproducibilita e I'indipendenza dai percorsi locali, il file di configu-
razione data.yaml é stato generato programmaticamente all’interno del notebook.
Questo script definisce i percorsi assoluti per i set di training, validation e test, e
mappa gli indici numerici ai nomi delle 63 classi.

dataset_config = {

>train’: ’/StreetSignSet/train/images’,

’val’: ’/StreetSignSet/valid/images?’,

test’: ’/StreetSignSet/test/images’,

‘nc’: 63,

’names’: [’prio_give_way’, ’prio_stop’, ’prio_priority_road’,
forb_speed_over_5’, ’forb_speed_over_10’, ’forb_speed_over_207’,
’forb_speed_over_30’, ’forb_speed_over_40’, ’forb_speed_over_50"’
, forb_speed_over_60°, ’forb_speed_over_70’,
forb_speed_over_80’, ’forb_speed_over_90’, ’forb_speed_over_100"
, >forb_speed_over_110’, ’forb_speed_over_120’, ’
forb_speed_over_130’, ’forb_no_entry’, ’forb_no_parking’, °’
forb_no_stopping’, ’forb_overtake_car’, ’forb_overtake_trucks?’,
>forb_trucks’, ’forb_turn_left’, ’forb_turn_right?’, ?’
forb_weight_over_3.5t’, ’forb_weight_over_7.5t’, ’forb_u_turn’,
’info_bus_station’, ’info_crosswalk’, ’info_highway?’, °’
info_one_way’, ’info_parking’, ’info_taxi_parking?’, °’
warn_children’, ’warn_construction’, ’warn_crosswalk’,
warn_cyclists’, ’warn_left_curve’, ’warn_right_curve’,
warn_domestic_animals’, ’warn_other_dangers’, °?

b

warn_poor_road_surface’, ’warn_roundabout’, ’
warn_sharp_left_curve’, ’warn_sharp_right_curve’, ’
warn_slippery_road’, ’warn_hump’, ’warn_traffic_light?’, ’
warn_tram’, ’warn_two_way_traffic’, ’warn_wild_animals’, °’
mand_bike_lane’, ’mand_go_left’, ’mand_go_left_right’, °?
mand_go_right’, ’mand_go_straight’, ’mand_go_straight_left’,
mand_go_straight_right’, ’mand_pass_left’, ’mand_pass_left_right
>, ’mand_pass_right’, ’mand_roundabout’]

}

with open(’data.yaml’, ’w’) as f:
yaml.dump (dataset_config, f)

!cat data.yaml
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B.4 Script di Addestramento

Di seguito sono riportati gli script completi utilizzati per avviare il training delle tre
varianti. Ogni script specifica gli iperparametri discussi nel Capitolo 3. Si noti che
il codice é replicato nei rispettivi notebook di progetto per garantire la tracciabilita

12
13
14

1

&)

di ogni esperimento.

model = YOLO(’yolol2n.pt?)

results = model.train(
data=’data.yaml’,
imgsz=640,

epochs=600,

patience=100,
save_period=50,
device=’0,1",

batch=140,

fliplr=0.0,
name=’yolol2n_run’,
project=’streetsignsense’

model = YOLO(’yolol2s.pt?’)

results = model.train(
data=’data.yaml’,
imgsz=640,
epochs=600,
patience=100,
save_period=50,
name=’yolol2s_run’,
project=’streetsignsense’,
device=’0,1",
batch=80,
fliplr=0.0

model = YOLO(’yolol2m.pt?)

results = model.train(
data=’data.yaml’,
imgsz=640,
epochs=600,
patience=100,
save_period=50,
name=’yolol2m_run’,
project=’streetsignsense’,
device=’0,1"7,
batch=40,
fliplr=0.0
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B.5 Script di Validazione

Lo script di validazione utilizzato per valutare le prestazioni del modello sul set di
validazione (valid) e calcola le metriche riportate nel Capitolo 4.

from ultralytics import YOLO

modelN = YOLO("/streetsignsense/yolol2n_run/weights/best.pt")
resultN = modelN.val(data="data.yaml", device=’0,17)

print ("\n\nmAP50-95:" ,resultN.box.map) # mapb0-95

print ("mAP-50:",resultN.box.map50) # mapb0

print ("mAP-75:",resultN.box.map75) # map75

print ("Average Precision: ", np.mean(resultN.box.p)) #
precision

print ("Average Recall: " ,np.mean(resultN.box.r)) # recall
print ("Average F1: ",np.mean(resultN.box.fl1)) # flscore

from ultralytics import YOLO

modelS = YOLO("/streetsignsense/yolol2s_run/weights/best.pt")
resultS = modelS.val(data="data.yaml", device=’0,17)

print ("\n\nmAP50-95:" ,resultS.box.map) # mapb0-95

print ("mAP-50:",resultS.box.map50) # mapb0

print ("mAP-75:",resultS.box.map75) # map75

print ("Average Precision: ", np.mean(resultS.box.p)) #
precision

print ("Average Recall: " ,np.mean(resultS.box.r)) # recall
print ("Average F1: ",np.mean(resultS.box.f1)) #fIlscore

from ultralytics import YOLO

modelM = YOLO("/streetsignsense/yolol2m_run/weights/best.pt")
resultM = modelM.val(data="data.yaml", device=’0,17)

print ("\n\nmAP50-95:" ,resultM.box.map) # mapb0-95

print ("mAP-50:",resultM.box.map50) # mapb0

print ("mAP-75:",resultM.box.map75) # map75

print ("Average Precision: ", np.mean(resultM.box.p)) #
precision

print ("Average Recall: " ,np.mean(resultM.box.r)) # recall
print ("Average F1: ",np.mean(resultM.box.f1)) #fIscore
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B.6 Script di Test

La valutazione finale delle performance é stata condotta utilizzando uno script
dedicato per l'inferenza sul test set (test).

folder = "/StreetSignSet/test/images"

#model YOLO("/streetsignsense/yolovi2n_run/weights/best.pt")
model = ("/streetsignsense/yolol2s_run/weights/best.pt")

#model = YOLO("/streetsignsense/yolol2m_run/weights/best.pt")
image_files = sorted ([f f os.listdir(folder) f.
endswith((’.jpg’, ’.png’, ’.jpeg?’))])

filename image_files:

image_path = os.path.join(folder, filename)
(f"\nRisultati per: {filenamel} ")

results = model (image_path, device=’0,17)

# Immagine con Prediziont
prediction_image = results[0].plot ()

cv2_imshow (prediction_image)

B.7 Script per I’Analisi delle Metriche

Per mantenere pulita la pipeline di addestramento, ’elaborazione avanzata dei dati
e la generazione dei grafici comparativi sono state delegate a un notebook dedicato.
Si rimanda al notebook yolol2modelanalysis (presente nella cartella del progetto)
per la consultazione degli script specifici utilizzati per:

e Calcolo e Visualizzazione mAP: Script per la rappresentazione dei valori
di mAP@50, mAP@50-95 e mAPQT5 e la generazione delle curve di confronto.

e Analisi Precision, Recall e F1-Score: Codice per il calcolo e la visualiz-
zazione grafica dell’andamento di Precisione, Recall e F1 score per tutte le
varianti del modello.

e Confronto Training e Validation Loss: Script di confronto e la generazione
delle curve di loss per tutte le varianti.

20



Appendice C

Metriche

Comparison of Training and Validation box Loss between YOLO12 Models
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Figura C.1: Confronto training and validation box loss tra le tre varianti
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Figura C.2: Confronto training and validation cls loss tra le tre varianti
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Figura C.4: Curve delle metriche di valutazione per il modello YOLO12 Nano.
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Figura C.5: Curve delle metriche di valutazione per il modello YOLO12 Small.
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