
Dipartimento di Matematica e Informatica

Corso di Laurea Triennale in Informatica

Machine Learning Project

Street Sign Sense

A Real-Time Detection System based on YOLO12

Autore

Alessandro Ferrante

Docenti

Prof. Giovanni Farinella

Prof. Rosario Leonardi

Anno Accademico 2024-2025
Settembre 2025

Sommario

Il progetto Street Sign Sense ha come obiettivo lo sviluppo di modelli YOLO12
per il rilevamento automatico dei segnali stradali. L'iniziativa combina applicazioni
pratiche in sistemi avanzati di assistenza alla guida e visione arti�ciale urbana con
�nalità accademiche e di ricerca. Il modello è stato addestrato sul dataset perso-
nalizzato Street Sign Set, composto da circa 7000 immagini distribuite su 63 classi,
con annotazioni in formato YOLO. Sono stati testati e confrontati tre modelli del-
la famiglia YOLO12, nello speci�co le varianti nano, small e medium, valutandoli
attraverso metriche consolidate quali Precision, Recall, mAP@50, mAP@50-95, F1-
Score e tempo medio di inferenza. Il training è stato condotto su due GPU T4 in
ambiente cloud Kaggle Notebook, estendendo il processo a 600 epoche con mecca-
nismo di early stopping. I risultati sperimentali mostrano prestazioni superiori del
modello medium, che raggiunge una mAP@50 di 0.916 e una mAP@50-95 di 0.811,
o�rendo un'ottima accuratezza.

Indice

1 Introduzione 3
1.1 Contesto . 3

Rilevamento automatico dei segnali stradali 3
1.2 Obiettivo Tecnico . 3

Finalità tecnica . 3
Architetture analizzate e dataset . 3
Strategia di training . 4
Analisi qualitativa delle predizioni . 4
Indicazioni per scenari applicativi . 4

2 Stato dell'Arte 5
2.1 Panoramica sull'Object Detection . 5

Categorie di approcci . 5
Metodi two-stage . 5
Metodi one-stage . 6
Miglioramenti nei metodi one-stage 6
Applicazioni in contesti real-time . 6

2.2 La famiglia YOLO . 7
Architettura One-Stage . 7
Evoluzione e Struttura Moderna . 8
Scalabilità . 9
Funzioni di perdita e strategie di ottimizzazione 9

2.3 Modello YOLO12 . 10
Evoluzione Architetturale . 10
Componenti Architetturali . 10
Sinergia tra CNN e Area Attention 12
Vantaggi Applicativi e Pratici . 12

3 Metodologia 14
3.1 Dataset - Street Sign Set . 14

Formato e Annotazioni . 15
Dimensioni e Distribuzione . 15
Classi del Dataset . 16
Data Augmentation . 16
Analisi della Distribuzione Spaziale (Heat Map) 17

3.2 Ambiente di Sviluppo . 17
Infrastruttura Hardware Cloud . 17
Stack Software e Framework . 18

3.3 Fase di Addestramento . 18
Strategia di Transfer Learning e Fine-Tuning 18
Con�gurazione, Ottimizzazione ed Early Stopping 19

1

Tempi di Addestramento E�ettivi . 20
Data Augmentation Online . 21
Monitoraggio Durante il Training . 23

4 Risultati e Analisi 24
4.1 Metriche di Valutazione . 24
4.2 Risultati Quantitativi . 25

Analisi Comparativa . 26
Dettaglio per Classe: Matrici di Confusione 28

4.3 Analisi Qualitativa . 30
Capacità di Astrazione . 30
Impatto della Frequenza delle Classi 31
Ambiguità e Confusioni Inter-classe 31

5 Discussione 32
5.1 Interpretazione dei Risultati e Scenari Applicativi 32
5.2 Analisi delle Criticità Operative . 33
5.3 Limiti del Lavoro . 33
5.4 Sviluppi Futuri . 33

6 Demo Web 35
Accesso al Codice e alla Demo Live 35

6.1 Architettura del Sistema . 35
6.2 Pipeline di Elaborazione . 35

Conversione e Caricamento del Modello 35
Pre-processing dell'Input . 36
Inferenza e Risultati . 36

6.3 Funzionalità e Interfaccia Utente . 36
Gestione degli Input . 37
Pannello di Controllo . 37
Metriche in Tempo Reale . 37

6.4 Considerazioni sulle Prestazioni Web 38

7 Conclusioni 39

8 Riproducibilità e Risorse del Progetto 40

Bibliogra�a 41

A Elenco Completo delle Classi del Dataset 43

B Dettagli Ambiente di Sviluppo e Codice 46
B.1 Installazione dipendenze . 46
B.2 Veri�ca dell'Ambiente . 46
B.3 Generazione della Con�gurazione del Dataset 47
B.4 Script di Addestramento . 48
B.5 Script di Validazione . 49
B.6 Script di Test . 50
B.7 Script per l'Analisi delle Metriche . 50

C Metriche 51

Capitolo 1

Introduzione

1.1 Contesto

Rilevamento automatico dei segnali stradali

Il rilevamento automatico dei segnali stradali è un'area di crescente rilevanza tra
la visione arti�ciale e il progresso dei sistemi di trasporto, in quanto permette di
analizzare e interpretare informazioni visive provenienti dall'ambiente circostante.
La capacità di un sistema di analizzare e interpretare il �usso video in ingresso è il
fondamento su cui si costruiscono i sistemi avanzati di assistenza alla guida (ADAS)
e le funzionalità dei veicoli a guida autonoma.

La s�da non si limita alla semplice identi�cazione (classi�cazione), ma richiede
la localizzazione geometrica precisa del segnale nel piano immagine, un processo
noto come object detection. Tali applicazioni sono intrinsecamente safety-critical,
l'identi�cazione tempestiva e a�dabile di un segnale di Stop o di un limite di velocità
è un requisito imprescindibile per la sicurezza e la corretta esecuzione delle manovre.

Per questi scenari operativi, i modelli devono risolvere un duplice problema con
estrema e�cienza: devono essere stabili in presenza di grande variabilità visiva
(cambiamenti di illuminazione, occlusioni e angolazioni) e devono garantire inferenza
in tempo reale (tipicamente a frame rate superiori ai 30 FPS). Il progetto si inserisce
in questo contesto, cercando di ottimizzare l'equilibrio tra accuratezza e velocità di
esecuzione.

1.2 Obiettivo Tecnico

Finalità tecnica

L'obiettivo tecnico principale consiste nella realizzazione di un processo completo di
addestramento, tuning e valutazione di modelli della famiglia YOLO12 per il rileva-
mento dei segnali stradali. L'obiettivo è individuare la con�gurazione più bilanciata
in termini di accuratezza e velocità di inferenza, al �ne di ottimizzare le prestazioni
del modello in contesti che richiedono elaborazione in tempo reale.

Architetture analizzate e dataset

Il lavoro prevede l'addestramento e l'analisi comparativa di tre versioni del modello
appartenenti alla famiglia YOLO12: le varianti YOLO12n (nano), YOLO12s (small)
e YOLO12m (medium). L'intero processo si basa su un dataset personalizzato,

3

realizzato appositamente per questo progetto e costruito in modo da garantire una
distribuzione rappresentativa delle diverse classi di segnali.

Per confrontare le prestazioni dei modelli sono state utilizzate un insieme di me-
triche ampiamente adottate nel campo dell'object detection, quali la Precision, il Re-
call, la mean Average Precision calcolata a di�erenti soglie di Intersection over Union
(IoU), l'F1-Score e il tempo medio di inferenza per frame, parametri fondamentali
per stimare l'equilibrio tra accuratezza e velocità di elaborazione.

Strategia di training

Il training viene e�ettuato attraverso tecniche di transfer learning, partendo da
pesi pre-addestrati su dataset di larga scala e adattandoli al dominio speci�co dei
segnali stradali attraverso �ne-tuning esteso. Sono state usate inoltre tecniche di
data augmentation per migliorare la capacità di generalizzazione dei modelli.

Analisi qualitativa delle predizioni

Oltre alle metriche quantitative, è stata condotta un'analisi qualitativa dei risultati
ottenuti dai modelli YOLO, con particolare attenzione alle di�erenze tra le varianti
utilizzate. Questa fase ha previsto l'osservazione diretta delle predizioni generate su
campioni rappresentativi del dataset, al �ne di individuare comportamenti ricorren-
ti, errori tipici e punti di forza di ciascun modello. Attraverso il confronto visivo
delle bounding box, dei falsi positivi e delle mancate rilevazioni, è stato possibile
comprendere meglio le metriche numeriche e valutare l'e�ettiva capacità dei modelli
di generalizzare in condizioni reali. L'obiettivo di questa analisi è stato quindi quello
di integrare i risultati quantitativi con un riscontro qualitativo, fornendo una visione
più completa delle prestazioni e del comportamento pratico delle diverse architetture
di YOLO.

Indicazioni per scenari applicativi

I risultati ottenuti consentono di trarre alcune indicazioni utili per l'applicazione
dei modelli in diversi contesti operativi. Nei sistemi embedded o real-time, in cui la
rapidità di elaborazione rappresenta un requisito prioritario, le varianti più leggere
come YOLO12n e YOLO12s costituiscono la soluzione più adeguata, o�rendo un
buon compromesso tra accuratezza e velocità anche su dispositivi con risorse limita-
te. In contesti con maggiore potenza di calcolo, modelli come YOLO12m risultano
invece più indicati, grazie a una precisione di rilevamento superiore, vantaggiosa in
applicazioni dove è richiesta una predizione più accurata.

4

Capitolo 2

Stato dell'Arte

2.1 Panoramica sull'Object Detection

L'object detection è una tecnica della computer vision che impiega le convolutional
neural networks (CNN) per individuare e classi�care oggetti presenti in immagini o
sequenze video. In quanto tale mira a riprodurre le capacità umane di riconoscere
e distinguere gli elementi visivi, assegnandoli a speci�che categorie semantiche. La
localizzazione consente di determinare con precisione la posizione di ciascun ogget-
to, generalmente rappresentata tramite un bounding box rettangolare de�nito da
coordinate nell'immagine, mentre la classi�cazione stabilisce la categoria di appar-
tenenza dell'oggetto rilevato. L'object detection unisce dunque entrambi gli aspetti,
consentendo di stimare simultaneamente la posizione e la tipologia delle istanze di
oggetti presenti nella scena.

Categorie di approcci

L'evoluzione delle tecniche di object detection nel contesto del deep learning può es-
sere suddivisa in due macro-categorie caratterizzate da approcci architetturali fonda-
mentalmente diversi. I metodi two-stage operano attraverso un processo sequenziale
in cui viene prima generato un insieme di regioni candidate e successivamente cia-
scuna regione viene classi�cata e ra�nata. I metodi one-stage e�ettuano detection
e classi�cazione in un'unica passata attraverso la rete neurale, eliminando la fase
esplicita di generazione delle proposte.

Metodi two-stage

I metodi two-stage hanno rappresentato per diversi anni lo standard di riferimento
nell'object detection, grazie all'elevata accuratezza ottenuta. La famiglia R-CNN,
introdotta da Girshick nel 2014, ha segnato un punto di svolta nell'impiego delle
reti neurali convoluzionali profonde per questo compito. Nei modelli two-stage,
l'intero processo di rilevamento avviene in due passaggi principali: una prima rete
identi�ca regioni candidate che potrebbero contenere oggetti, mentre una seconda
fase si occupa della classi�cazione e del ra�namento dei bounding box. Nonostante
l'elevata precisione, la complessità e i tempi di elaborazione elevati li rendono poco
adatti a contesti real-time, favorendo la di�usione dei metodi one-stage.

5

Metodi one-stage

Gli approcci one-stage sono stati concepiti per ridurre la complessità dei modelli
two-stage e migliorare la velocità di inferenza. Invece di generare e analizzare espli-
citamente regioni candidate, questi metodi suddividono l'immagine in una griglia e
predicono simultaneamente le coordinate dei bounding box e le relative probabilità
di classe. Soluzioni come SSD e YOLO hanno dimostrato che è possibile mante-
nere buoni livelli di accuratezza riducendo drasticamente i tempi di elaborazione,
rendendo tali architetture ideali per applicazioni in tempo reale.

Miglioramenti nei metodi one-stage

Numerosi contributi hanno progressivamente ridotto il divario prestazionale tra i due
approcci. Architetture come RetinaNet hanno introdotto funzioni di perdita avan-
zate, come la focal loss, per gestire lo sbilanciamento tra esempi positivi e negativi,
migliorando la stabilità e la precisione del training. Le evoluzioni successive della
famiglia YOLO hanno a loro volta integrato varianti di queste strategie, adottan-
do funzioni di perdita focalizzate o adattive per a�nare la qualità delle predizioni.
Questi progressi hanno consolidato la rilevanza degli approcci one-stage, che oggi
costituiscono la base dei modelli moderni ad alte prestazioni.

Applicazioni in contesti real-time

Nel contesto dei sistemi avanzati di assistenza alla guida (ADAS) e dei veicoli au-
tonomi, i metodi one-stage rappresentano la soluzione più adatta grazie alla loro
elevata e�cienza computazionale. Queste applicazioni richiedono l'elaborazione di
�ussi video in tempo reale, con frame rate tipicamente pari o superiori a trenta foto-
grammi al secondo, e latenze di inferenza nell'ordine di poche decine di millisecondi
per frame. Solo approcci altamente ottimizzati, come la famiglia YOLO, riescono a
garantire tali prestazioni mantenendo livelli di accuratezza su�cientemente elevati
per contesti safety-critical, dove la tempestività e l'a�dabilità delle decisioni sono
fondamentali.

Figura 2.1: Esempio di rilevamento con YOLO12

6

2.2 La famiglia YOLO

YOLO è una famiglia di modelli di computer vision in real time, che utilizzano
l'algoritmo di rilevamento degli oggetti "You Only Look Once" sviluppato da Ultra-
lytics, questa famiglia di modelli ha rappresentato una svolta nel campo dell'object
detection, introducendo un'architettura one-stage che ha ride�nito gli standard di
e�cienza per le applicazioni in tempo reale. Questo paradigma ha permesso di rag-
giungere un equilibrio ottimale tra accuratezza e velocità di elaborazione, rendendo
YOLO una delle architetture più utilizzate sia in ambito accademico che industriale.

Architettura One-Stage

Dal momento che YOLO utilizza l'approccio one-stage, uni�ca l'intero processo
di generazione delle regioni, classi�cazione e ra�namento in un'unica rete end-to-
end. Questa �loso�a architetturale consente di ridurre drasticamente la complessità
computazionale, ottenendo tempi di inferenza nell'ordine di pochi millisecondi e
rendendo l'object detection applicabile in scenari real-time.

Figura 2.2: Rappresentazione concettuale del paradigma You Only Look Once (YO-
LO). Il processo uni�cato suddivide l'input in una griglia, genera bounding box e
mappe di probabilità di classe simultaneamente in un unico passaggio.

Il principio fondamentale di YOLO consiste nel riformulare il rilevamento degli
oggetti come un singolo problema di regressione. L'immagine in input viene sud-
divisa in una griglia di celle. Ciascuna cella è responsabile di predire un numero
prede�nito di bounding box e le probabilità di appartenenza a una classe per gli
oggetti il cui centro si trova al suo interno. Questo permette di generare tutte le
predizioni simultaneamente con un'unica valutazione della rete.

7

Figura 2.3: Architettura YOLOv1. La prima architettura YOLO ha un totale
di 24 livelli convoluzionali con 2 livelli completamente connessi alla �ne.

Evoluzione e Struttura Moderna

Dalla sua concezione, la �loso�a YOLO si è basata su un'intuizione fondamentale:
riformulare il rilevamento di oggetti come un singolo problema di regressione, eli-
minando la necessità di una fase separata per la generazione di proposte di regioni.
Le versioni precedenti a YOLO12 hanno perfezionato questo approccio attraver-
so architetture interamente basate su Reti Neurali Convoluzionali (CNN) e hanno
consolidato una struttura canonica articolata in tre componenti principali:

Figura 2.4: Architettura YOLOv4. L'achitettura contenente i tre componenti
principali è stata consolidata a partire dalla versione YOLOv4 e mantenuto nelle
successive

� Backbone: Rappresenta la spina dorsale della rete e agisce come un potente
estrattore di feature gerarchiche. Costituito da una profonda rete convolu-
zionale pre-addestrata su dataset di vasta scala, il suo compito è analizzare
l'immagine in input e apprendere a riconoscere concetti visivi a livelli di astra-
zione crescenti. Gli strati iniziali imparano a identi�care feature di basso livel-
lo come bordi e gradienti di colore, mentre gli strati più profondi combinano
queste informazioni per riconoscere texture, forme complesse e, in�ne, parti di
oggetti.

� Neck: Questa componente si comporta come un ponte tra il backbone e l'head
di rilevamento. La sua funzione è quella di aggregare e combinare le fea-
ture map estratte a diversi livelli di profondità. Architetture come le Path
Aggregation Networks (PAN) vengono impiegate per fondere informazioni se-
mantiche ad alto livello con dettagli spaziali a risoluzione più �ne, creando
rappresentazioni multi-scala essenziali per rilevare oggetti di dimensioni molto
diverse.

8

� Head: È la parte �nale e decisionale della rete, responsabile della generazione
delle predizioni. Operando sulle feature map aggregate, l'head stima, per ogni
cella della griglia, le coordinate dei bounding box, un punteggio di con�denza
(objectness) e le probabilità di classe. Gli head moderni sono decoupled, ovvero
utilizzano rami distinti per la regressione dei box e la classi�cazione, e generano
predizioni su più scale per ottimizzare il rilevamento di oggetti piccoli, medi
e grandi. Tuttavia, le architetture più recenti hanno superato il concetto di
una "decoupled head" statica. YOLOv11 ha introdotto un "Dynamic Head
Design", capace di adattare le proprie funzionalità in base alle caratteristiche
dell'input per migliorare l'accuratezza. YOLO12 evolve ulteriormente questo
concetto: la sua "Detection Head" è potenziata da tecnologie all'avanguardia
come FlashAttention e meccanismi di adattamento dinamico.

Questo approccio, pur essendo estremamente e�ciente, si a�da implicitamente alla
capacità degli strati convoluzionali di apprendere le relazioni spaziali e contestuali
più rilevanti, un paradigma che YOLO12 ha evoluto attraverso l'integrazione di
meccanismi di attenzione.

Evoluzione della famiglia YOLO

Scalabilità

Uno dei punti di forza della famiglia YOLO è la sua intrinseca scalabilità. Per
rispondere alle diverse esigenze applicative, ogni versione dell'architettura viene di-
stribuita in più varianti, identi�cate da su�ssi come nano (n), small (s), medium
(m), large (l) ed extra-large (x). Queste varianti o�rono un trade-o� controllato tra
accuratezza e velocità, ottenuto modulando la profondità e la larghezza del modello,
e di conseguenza il numero di parametri. Questa �essibilità permette di seleziona-
re il modello più adatto al contesto, da sistemi embedded con risorse limitate che
privilegiano la rapidità (es. YOLO12n) a implementazioni cloud dove la priorità è
massimizzare l'accuratezza (es. YOLO12x).

Funzioni di perdita e strategie di ottimizzazione

Le versioni più recenti della famiglia YOLO hanno introdotto importanti migliora-
menti anche nelle strategie di addestramento. L'obiettivo è ottimizzare la conver-
genza, stabilizzare il training e migliorare la precisione complessiva del modello.

Dal punto di vista delle funzioni di perdita, le architetture moderne adottano
versioni adattive della IoU Loss, come la CIoU e la SIoU, che incorporano infor-
mazioni geometriche aggiuntive (ad esempio la distanza tra i centri e l'allineamento

9

angolare dei bounding box) per una regressione più accurata. Per la classi�cazio-
ne, sono spesso impiegate funzioni di perdita bilanciate come la Focal Loss o sue
varianti, utili per mitigare lo sbilanciamento tra esempi facili e di�cili.

Sul piano dell'ottimizzazione, le implementazioni più recenti fanno uso dell'algo-
ritmo Stochastic Gradient Descent (SGD) con momentum e strategie come il cosine
learning rate decay, che favoriscono una discesa più stabile e una migliore generaliz-
zazione. In alcuni casi vengono introdotte tecniche di warm-up iniziale o gradient
clipping per migliorare la stabilità numerica nelle prime fasi di training.

Questi perfezionamenti, uniti alle innovazioni architetturali, hanno contribuito
a rendere YOLO una delle famiglie di modelli più versatili ed e�cienti nell'ambito
dell'object detection moderna.

2.3 Modello YOLO12

La scelta di adottare YOLO12 per il progetto Street Sign Sense è motivata da una
convergenza di fattori tecnici, pratici e strategici che lo rendono la soluzione ottimale
per gli obiettivi pre�ssati.

Evoluzione Architetturale

Le versioni precedenti di YOLO si basavano quasi esclusivamente su architetture
convoluzionali (CNN) per l'estrazione e l'elaborazione delle feature, YOLO12 segna
un'evoluzione signi�cativa introducendo un design "attention-centric". Come
evidenziato dalla documentazione [3], questo modello "si discosta dagli approcci
tradizionali basati su CNN", integrando meccanismi di attenzione per migliorare
l'accuratezza senza compromettere la velocità di inferenza.

Un'architettura attention-centric mira a simulare la capacità umana di concen-
trarsi selettivamente sulle parti più importanti di una scena visiva. Invece di trattare
tutte le regioni e le feature estratte con la stessa importanza, il meccanismo di at-
tenzione apprende dinamicamente a pesare le informazioni, assegnando maggiore
rilevanza alle aree e alle caratteristiche più indicative per il compito di rilevamento.

Componenti Architetturali

L'architettura di YOLO12 mantiene la struttura canonica Backbone-Neck-Head, ma
ogni componente è stato riprogettato integrando elementi avanzati:

� Backbone Ottimizzato (Basato su R-ELAN): Il backbone, responsabi-
le dell'estrazione iniziale delle feature, impiega blocchi R-ELAN (Residual
Enhanced Layer Aggregation Network). Questi moduli rappresentano
l'evoluzione diretta delle architetture precedenti, superando i limiti dei moduli
CSPNet (YOLOv4/v5) e ELAN/GELAN (YOLOv7/v9). Migliorano la pre-
cedente architettura ELAN combinando l'e�cacia delle connessioni residue,
note per facilitare il training di reti molto profonde, con meccanismi avanzati
di aggregazione delle feature, migliorando l'apprendimento delle dipendenze
spaziali e contestuali. Un'ulteriore ottimizzazione in YOLO12 consiste nel-
la riduzione della profondità dei blocchi impilati (Stacked Blocks Reduction):
rispetto ai tre blocchi tipici delle versioni recenti, YOLO12 ne utilizza uno
solo nell'ultima fase, sempli�cando l'ottimizzazione e aumentando la velocità
di inferenza, specialmente nei modelli più profondi.

10

Figura 2.5: Confronto tra i moduli di backbone (a): CSPNet, (b) ELAN , (c)
C3K2 (un caso di GELAN) e (d) il nuovo modulo R-ELAN (Residual E�cient
Layer Aggregation Networks) presente nell'architettura di YOLO12.

� Neck Avanzato (Area Attention): Per ottimizzare l'e�cienza computa-
zionale, YOLO12 introduce il meccanismo di Area Attention Module. A
di�erenza di altri approcci di attenzione locale (come Shift Window o Axial
Attention) che possono introdurre overhead, l'Area Attention divide semplice-
mente la feature map in segmenti più ampi (tipicamente l = 4, orizzontalmente
o verticalmente). Questo metodo trasforma l'attenzione globale in locale senza
complesse partizioni, preservando un ampio campo recettivo. Grazie a questa
suddivisione, il costo computazionale viene ridotto drasticamente: passando
da 2n2hd a 1

l
2n2hd. Con un valore di default l = 4, il costo diventa (n2hd)/2,

ottimizzando il meccanismo di Multi-Head Attention del 75%. Questo rispar-
mio è reso possibile non riducendo i canali o le head, ma calcolando l'attenzione
su segmenti spaziali ridotti, e mantenendo alta la velocità di esecuzione.

Figura 2.6: Confronto tra i meccanismi alternativi di attenzione locale e l'Area
Attention

� Head Dinamico con FlashAttention: L'head di rilevamento rappresenta
forse l'innovazione più distintiva. Superando il concetto di "decoupled head"
statica, YOLO12 implementa un Head Dinamico con l'integrazione di Fla-
shAttention, una tecnologia che ottimizza l'accesso alla memoria durante le
operazioni di attenzione, risolvendo uno dei principali colli di bottiglia e col-
mando il divario di velocità con le CNN tradizionali. Inoltre, la rimozione
della codi�ca posizionale nei livelli di attenzione sempli�ca ulteriormente
l'architettura, rendendola più "pulita" ed e�ciente senza sacri�care le presta-
zioni nel rilevamento. Questo permette alla rete di focalizzarsi sulle regioni e
sui canali più informativi in modo adattivo, migliorando signi�cativamente la
precisione nella localizzazione (regressione dei bounding box) e nella classi�-
cazione, specialmente per oggetti piccoli, parzialmente occlusi o in condizioni
di illuminazione di�cili.

� Ottimizzazione Computazionale (MLP Ratio e Operatori): Per bilan-
ciare il carico computazionale tra i meccanismi di attenzione e i blocchi feed-

11

forward, il rapporto di espansione del Multi-Layer Perceptron (MLP
Ratio Adjustment) è stato ridotto da 4 (valore comune nei Transformer) a
circa 1.2. Questo evita che l'MLP domini il tempo di esecuzione. In�ne, l'ar-
chitettura fa ampio uso di operatori di convoluzione con batch normalization
anziché layer lineari con layer normalization, sfruttando la maggiore e�cien-
za computazionale degli operatori convoluzionali ottimizzati per l'hardware
moderno.

Sinergia tra CNN e Area Attention

L'introduzione dei meccanismi di area attention (A2) non sostituisce le reti
convoluzionali, ma le integra in un'architettura ibrida più e�cace. Gli strati con-
voluzionali (CNN) restano fondamentali per l'estrazione delle feature visive, pro-
ducendo feature map che codi�cano bordi, texture e forme, sulle quali i moduli di
attenzione operano per identi�care le informazioni più rilevanti, sia a livello spa-
ziale (aree dell'immagine che contengono elementi cruciali), sia a livello di canali
(tipi di feature che risultano più signi�cative). Questa capacità consente al model-
lo di creare sinergia architetturale tra estrazione e interpretazione delle feature,
permettendogli di comprendere meglio il contesto, gestire occlusioni complesse e di-
stinguere oggetti con caratteristiche simili con maggiore precisione, rappresentando
un vantaggio decisivo rispetto alle architetture precedenti.

Vantaggi Applicativi e Pratici

Oltre all'innovazione architetturale, la scelta di YOLO12 è stata consolidata da una
serie di considerazioni pratiche che ne hanno garantito la fattibilità e la riproducibi-
lità. YOLO12 si posiziona come una soluzione allo stato dell'arte, o�rendo un eccel-
lente compromesso tra accuratezza di rilevamento (mAP su MS COCO) ed e�cienza
computazionale (Latenza e FLOPs) rispetto ai precedenti modelli Ultralytics.

Confronto delle prestazioni di YOLO12 con altri modelli Ultralytics

Questa superiorità nel bilanciamento di prestazioni e e�cienza si traduce in
bene�ci concreti:

� Accuratezza Migliorata: I meccanismi di attenzione e l'head dinamico af-
frontano speci�camente le s�de del rilevamento nel mondo reale. Le diver-
se varianti del modello permettono di navigare e�cacemente il trade-o� tra
velocità di inferenza e accuratezza di rilevamento.

12

Confronto tra Accuratezza e Velocità

� E�cienza Real-Time: Nei sistemi avanzati di assistenza alla guida (ADAS),
l'elaborazione in tempo reale rappresenta un requisito fondamentale. Ciò im-
plica la necessità di processare �ussi video a frame rate di almeno 30 fps per
garantire una reattività adeguata. Nonostante la sua complessità architettura-
le, YOLO12 mantiene il vantaggio principale della famiglia YOLO: la velocità
di inferenza, è in grado di raggiungere throughput superiori ai 60 fps anche
su hardware non specializzato, o�rendo un margine di performance essenziale
per l'integrazione in sistemi con vincoli temporali.

� Transfer Learning e Fine-Tuning Mirato: La disponibilità di utilizzare
un modello pre-addestrato su un dataset di vasta scala (in questo caso, COCO)
ha permesso di sfruttare e�cacemente il transfer learning, per trasferirne
la conoscenza a un compito speci�co. Nello speci�co, è stata adottata una
strategia di �ne-tuning,in cui i pesi pre-addestrati non sono stati utilizza-
ti come un estrattore di feature statico, ma sono stati ra�nati continuando
il processo di backpropagation sull'intero modello. Questo approccio ha due
vantaggi strategici: primo, accelera drasticamente la convergenza, riducendo
il tempo di training complessivo; secondo, permette di raggiungere un'accu-
ratezza superiore anche con un dataset di dimensioni moderate, rendendo il
progetto fattibile con le risorse computazionali a disposizione.

� Ecosistema di Sviluppo Ultralytics: L'ecosistema di sviluppo fornito da
Ultralytics, astrae gran parte della complessità implementativa, o�rendo un
ambiente di lavoro completo e intuitivo, come la possibilità di con�gurazio-
ne tramite �le YAML. Inoltre, il framework integra nativamente il monito-
raggio automatico delle metriche e la visualizzazione dei risultati, fornendo
un feedback immediato sull'andamento del training. Questo ha permesso di
concentrare l'attenzione sugli aspetti metodologici del progetto.

� Compatibilità e Accessibilità: L'e�cienza di YOLO12 e la sua compatibi-
lità con diversi ambienti di esecuzione, dallo sviluppo su GPU �no ai sistemi
embedded o server di produzione, evidenziano la �essibilità e l'adattabilità a
contesti operativi realistici.

Inoltre, l'integrazione con un ambiente di sviluppo precon�gurato ha favorito
un processo di prototipazione rapido ed e�ciente, permettendo di concentrare
l'attenzione sull'analisi del modello e sull'ottimizzazione dei parametri, anziché
sulla gestione delle dipendenze e del sistema.

13

Capitolo 3

Metodologia

3.1 Dataset - Street Sign Set

Per questo progetto, è stato realizzato un dataset personalizzato, denominato Street
Sign Set, attraverso un processo iterativo di raccolta, integrazione e annotazione
mirato a rappresentare la variabilità dei segnali stradali in contesti realistici.

Origine e Costruzione

Il dataset Street Sign Set è stato assemblato attraverso un processo mirato di
selezione e integrazione di dati. Come punto di partenza è stato utilizzato un data-
set pubblico disponibile sulla piattaforma Kaggle costituito da circa 4000 immagini.
Questa base iniziale è stata ampliata in modo considerevole, con più di 3000 nuo-
ve immagini, sia integrando una selezione di immagini di altri dataset presenti su
Kaggle, sia attingendo da altre fonti, per reperire esempi speci�ci, ottenendo così
un totale di oltre 7000 immagini.

Un elemento cruciale e distintivo di questo lavoro è stato l'arricchimento del
dataset con il materiale raccolto, per compensare la scarsità di esempi delle classi
sottorappresentate. In questa fase è stata svolta l'acquisizione manuale di immagini
da servizi di mappatura stradale e altre fonti pubbliche, attraverso una selezione
qualitativa.

La decisione di creare un dataset dedicato nasce dalla necessità di rappresen-
tare classi meno comuni e da una analisi delle risorse disponibili. Nonostante su
piattaforme come Kaggle esistano diversi dataset dedicati alla segnaletica, questi
presentano diverse limitazioni: molti sono di dimensioni ridotte, non coprono alcune
delle classi di interesse, oppure sono composti prevalentemente da immagini sinte-
tiche o vettoriali, prive della complessità visiva dell'ambiente stradale. Lo Street
Sign Set, con 63 classi e la focalizzazione su contesti reali, è stato concepito proprio
per colmare questo vuoto, o�rendo una rappresentazione più completa rispetto alle
alternative già presenti.

Il processo di costruzione è stato iterativo, cioè le immagini sono state aggiunte
progressivamente in base alle necessità rilevate dalle analisi delle performance dei
modelli durante fasi di training e di test, mirando a ra�orzare le classi o le condizioni
in cui si osservavano maggiori di�coltà nel rilevamento.

14

Formato e Annotazioni

Il dataset adotta lo standard di annotazione YOLO. A ogni immagine sorgente è
associato un �le di testo (.txt) con lo stesso �lename. Ogni riga del �le di testo
contiene l'identi�catore (indice) della classe seguito dalle coordinate normalizzate del
bounding box (xcentro, ycentro, larghezza, altezza) . La fase di etichettatura manuale
è stata condotta sulla piattaforma Robo�ow, che ha permesso di de�nire bounding
box precisi. Tuttavia, data la diversità delle fonti originali, per garantire l'integrità
strutturale del dataset, è stato necessario sviluppare ed eseguire una serie di script
Python dedicati al pre-processing e alla normalizzazione dei dati. Questi script
hanno svolto funzioni di data curation:

� Mapping delle classi per rimappare etichette provenienti da fonti diverse e
ottenere uno schema uni�cato con le 63 classi.

� Filtraggio delle classi per rimuovere speci�che annotazioni.

� Gestione dei �le per gestire i �le correttamente in modo da garantire struttura
e �le consistenti e conformi ai requisiti del framework.

� Rinomina dei �le per ottenere �lename con uno schema logico de�nito utiliz-
zando il nome della classe e il progressivo (nome_classe-n.jpg).

� Analisi del dataset per analizzare le occorrenze di ogni singola classe e la loro
distribuzione nei vari split (training, validation, test).

Dimensioni e Distribuzione

La versione �nale del dataset Street Sign Set è costituita da un totale di oltre 7300
immagini. La ripartizione dei dati è stata piani�cata strategicamente: il training set
conta 5467 immagini e il validation set 1746, con un rapporto di 74% e 24%. . Il test
set è stato intenzionalmente mantenuto di dimensioni contenute, comprendendo 160
immagini; questa scelta deriva dalla volontà di concentrare la quasi totalità delle
risorse disponibili nella costituzione di set di addestramento e validazione partico-
larmente robusti e variegati, massimizzando così la capacità di apprendimento del
modello.

Analizzando la distribuzione a livello di singole annotazioni (bounding boxes), su
un totale complessivo di 12.170 istanze etichettate, il dataset risulta così struttu-
rato:

� Training Set: 8996 annotazioni (≈ 73.92%);

� Validation Set: 2886 annotazioni (≈ 23.71%);

� Test Set: 288 annotazioni (≈ 2.37%).

15

Figura 3.1: Istogramma del numero di classi annotate in ogni immagine

Classi del Dataset

Il dataset comprende 63 classi distinte di segnali stradali, tra queste ci sono 23 classi
che sono state identi�cate come target primari per l'analisi delle performance. Le
23 classi principali riguardano la segnaletica di:

� Limiti di velocità (14 classi, es. 5�130 km/h).

� Segnali di divieto (4 classi, es. divieto di sosta/fermata, divieto di sorpasso
auto/camion).

� Segnali di precedenza (2 classi , es. dare precedenza e stop).

� Curve e attraversamenti.(3 classi, es, curva pericolosa a destra/sinistra,
attraversamento pedonale)

Data Augmentation

Per mitigare lo sbilanciamento nella frequenza delle diverse classi, è stata implemen-
tata data augmentation selettiva per classi sottorappresentate. Le trasformazioni
includevano:

� Grayscale: Apply to 23% of images;

� Hue: Between -102° and +102;

� Saturation: Between -40% and +40%;

� Brightness: Between -25% and +25%;

� Blur: Up to 4.5px;

� Noise: Up to 2.7% of pixels;

16

Analisi della Distribuzione Spaziale

Un aspetto importante nella validazione del dataset riguarda la distribuzione spa-
ziale degli oggetti di interesse. La Annotation Heat Map (Figura 3.2) o�re una
rappresentazione visiva della densità delle annotazioni, dove le sfumature di colo-
re indicano la frequenza con cui i bounding box appaiono in speci�che celle della
griglia dell'immagine. In un contesto di guida reale, si ha una concentrazione na-
turale dei segnali in determinate aree (tipicamente ai bordi della carreggiata o in
alto), proprio come dimostrato dalla heatmap che nonostante è ben distribuita, in-
dica che il maggior numero delle annotazioni è localizzato nel nella parte destra e
nella fascia superiore dell'immagine. Una distribuzione eccessivamente polarizzata
potrebbe introdurre un bias posizionale nel modello, portandolo a ignorare a priori
le zone dell'immagine dove i segnali appaiono più raramente. L'analisi di questa
mappa permette di veri�care se occorre adottare una strategia di Data Augmen-
tation. Tecniche come il Mosaic e le trasformazioni prospettiche casuali(Ritaglio
casuale, Rotazione, Capovolgimento, ecc.) sono utili proprio per contrastare questo
fenomeno, rendendo le feature invarianti rispetto alla posizione.

Figura 3.2: Annotation Heat Map del dataset: visualizzazione della densità posizio-
nale dei bounding box.

3.2 Ambiente di Sviluppo

L'intero processo di sviluppo, addestramento e validazione dei modelli è stato ese-
guito sull'ambiente computazionale Kaggle Notebooks. Scelta motivata dalla
combinazione di accessibilità, potenza computazionale e riproducibilità che o�re.

Hardware e Cloud

Kaggle o�re accesso completamente gratuito a sessioni di calcolo con acceleratori
GPU NVIDIA Tesla T4. In ogni sessione sono state sfruttate due GPU T4 in

17

parallelo, permettendo di accelerare il processo di training e distribuire il carico
computazionale tra le due unità.

Le GPU T4, o�rono 16GB di memoria ciascuna e sono ottimizzate per inferenza
e training di reti neurali. Queste risorse sono state sfruttate automaticamente dal
framework Ultralytics per ridurre i tempi di training.

La possibilità di eseguire sessioni di commit in cui notebooks vengono eseguiti
in background nel cloud, è stata fondamentale, per gestire il training dei modelli
senza la necessità di mantenere attive le sessioni interattive.

La con�gurazione hardware include anche 30GB di RAM di sistema e 4 core
CPU Intel Xeon, risorse su�cienti per le operazioni di preprocessing dei dati e di
input output necessarie per alimentare continuamente le GPU con batch di dati.

Stack Software e Framework

L'interfaccia di sviluppo utilizzata da Kaggle è Jupyter Notebook, che ha permesso
l'esecuzione delle celle di codice Python e celle di markdown per la documentazione,
sempli�cando le fasi del progetto, dalla con�gurazione alla valutazione. . L'ambien-
te precon�gurato di Kaggle, basato su Linux Ubuntu con CUDA 11.8 e cuDNN, ha
eliminato le complessità della gestione delle dipendenze, ma a�darsi esclusivamente
alle versioni preinstallate nelle piattaforme cloud comporta rischi per la riproduci-
bilità a lungo termine, a causa dei frequenti aggiornamenti automatici delle librerie.
Infatti per garantire la stabilità e assicurare che i risultati siano replicabili indipen-
dentemente dal momento dell'esecuzione, le librerie critiche per il progetto sono state
de�nite in un �le requirements.txt, richiedendo in questo modo l'installazione di
versioni speci�che.

L'installazione delle dipendenze viene eseguita all'avvio nel seguente modo:

1 !pip install -r /kaggle/input/sssrequirements/requirements.txt

Il �le di con�gurazione, �ssa le versioni del framework Ultralytics (per l'archi-
tettura YOLO), di OpenCV (per la manipolazione delle immagini) e delle librerie
di supporto, eliminando potenziali incompatibilità future.

requirements.txt

1 ipython ==7.34.0

2 opencv_contrib_python ==4.10.0.84

3 opencv_python ==4.10.0.84

4 opencv_python_headless ==4.10.0.84

5 Pillow ==11.3.0

6 PyYAML ==6.0.3

7 ultralytics ==8.3.229

Librerie standard come OpenCV, NumPy e Matplotlib sono state ivece utilizzate
per il preprocessing delle immagini, le manipolazioni numeriche e la visualizzazione
dei risultati.

3.3 Fase di Addestramento

Strategia di Transfer Learning e Fine-Tuning

Come discusso nel Capitolo 2, l'addestramento si è basato sul transfer learning. Sono
stati utilizzati i pesi pre-addestrati sul dataset COCO forniti da Ultralytics come
punto di partenza. L'intero modello (backbone, neck e head) è stato poi sottoposto

18

a �ne-tuning sul dataset Street Sign Set, permettendo alla rete di adattare le feature
apprese sul dataset generico al dominio speci�co dei segnali stradali.

Con�gurazione, Ottimizzazione ed Early Stopping

Il processo di addestramento è stato con�gurato tramite Python e il framework
Ultralytics, de�nendo parametri speci�ci del training e passandoli direttamente alla
funzione di avvio. Mentre la de�nizione della struttura del dataset (percorsi e classi)
è stata delegata al �le di con�gurazione data.yaml.

I parametri principali sono :

� Epoche: L'addestramento è stato eseguito con un numero �ssato a 600 epoche
massimo.

� Early stopping: È stato attivato un meccanismo di early stopping con una
patience di 100 epoche. Questo signi�ca che il training si interrompe auto-
maticamente se le metriche di performance, in particolare la mAP@50-95 (o la
�tness complessiva), non mostrano miglioramenti per 100 epoche consecutive.

� Optimizer: È stato utilizzato l'ottimizzatore Stochastic Gradient Descent
(SGD) con momentum (valore di default, 0.9).

� Learning rate: Il learning rate iniziale è stato impostato a 0.01 con una
fase di warmup lineare seguito da cosine annealing schedule che riduce
il learning rate durante il resto del training per favorire la convergenza verso
un minimo ottimale.

� Dimensioni Immagine: Tutte le immagini sono ridimensionate a 640Ö640
pixel prima di essere fornite alla rete, una dimensione standard che o�re un
buon compromesso tra dettaglio e carico computazionale.

� Batch Size Di�erenziato: La dimensione del batch è stata adattata per
ogni variante modello addestrato. Le varianti, quando vengono caricate sulle
GPU occupano di�erenti quantità di memoria, dunque questo in�uisce sullo
spazio che resta disponibile per il caricamento delle immagini del batch. Per
cui al �ne di massimizzare l'utilizzo delle GPU disponibili (2x NVIDIA T4) i
batch size per ogni variante sono stati impostati in questo modo:

� YOLO12n: 140 immagini per step (70 per GPU).

� YOLO12s: 80 immagini per step (40 per GPU).

� YOLO12m: 40 immagini per step (20 per GPU).

Questi settaggi hanno permesso di sfruttare al massimo le risorse computazio-
nali delle GPU per ciascuna variante del modello, ottimizzando notevolmente
i tempi di training evitando sprechi di risorse o errori di Out-of-Memory.

� Gestione Augmentation: Parametro fliplr Il parametro di data aug-
mentation relativo al ribaltamento orizzontale (fliplr), nella con�gurazio-
ne dell'addestramento, è stato �ssato a 0.0. Questa decisione è motivata
dalla natura asimmetrica delle classi target (es. segnaletica direzionale): il
ribaltamento orizzontale dell'immagine avrebbe alterato il signi�cato seman-
tico della classe (trasformando, ad esempio, una indicazione "sinistra" in "de-
stra"), compromettendo la capacità del modello di distinguere correttamente
l'orientamento degli oggetti.

19

L'implementazione pratica di questa con�gurazione è riportata nei codici a seguire,
dove si evidenzia anche l'impostazione esplicita per l'utilizzo parallelo delle GPU.

1 model = YOLO('yolo12n.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 device='0,1',

10 batch =140,

11 fliplr =0.0,

12 name='yolo12n_run ',

13 project='streetsignsense '

14)

1 model = YOLO('yolo12s.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 name='yolo12s_run ',

10 project='streetsignsense ',

11 device='0,1',

12 batch =80,

13 fliplr =0.0

14)

1 model = YOLO('yolo12m.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 name='yolo12m_run ',

10 project='streetsignsense ',

11 device='0,1',

12 batch =40,

13 fliplr =0.0

14)

Tempi di Addestramento E�ettivi e Gestione delle Risorse

L'addestramento è stato con�gurato per estendersi �no a un massimo di 600 epoche,
integrando il meccanismo di early stopping nativo del framework Ultralytics con una
patience impostata a 100 epoche. L'obiettivo dell'early stopping è interrompere il
processo qualora non si osservassero miglioramenti tangibili sulle metriche di valida-
zione, in questo caso la soglia di epoche senza miglioramenti è stata impostata per
100 epoche consecutive, ottimizzando così l'uso delle risorse.

20

L'esecuzione sull'ambiente Kaggle (2x NVIDIA T4) ha permesso di misurare i
tempi di esecuzione; le dinamiche di arresto speci�che per ciascun modello sono
riportate di seguito:

� YOLOv12n: Il modello nano ha impiegato un runtime di 5h 38m 40s. Il mec-
canismo di early stopping è intervenuto correttamente, arrestando il training
all'epoca 361. Il checkpoint �nale con le prestazioni ottimali è stato dunque
registrato all'epoca 261.

� YOLOv12s: La variante small ha richiesto un runtime di 7h 4m 25s, con
l'early stopping che ha determinato la convergenza ottimale all'epoca 170,
arrestando infatti l'addestramento all'epoca 270, considerata la mancanza di
miglioramenti nelle ultime 100 epoche.

� YOLOv12m: La variante medium, caratterizzata da una maggiore comples-
sità computazionale, ha richiesto una strategia di training suddivisa in due
sessioni, per rispettare i vincoli di runtime della piattaforma Kaggle (limite di
12 ore consecutive). Il processo complessivo ha impiegato un tempo totale di
13h 23m 53s.

Nella prima sessione, l'addestramento si è interrotto forzatamente allo scadere
della quota oraria disponibile, raggiungendo l'epoca 262. Un'analisi del �le di
log (results.csv) ha permesso di identi�care il picco di performance all'epoca
187, con una mAP@50-95 pari a 0.81.

Per veri�care l'eventuale presenza di margini di miglioramento, è stata avviata
una seconda sessione impostando una patience ridotta a 25 epoche. Tuttavia, il
meccanismo di early stopping non è intervenuto alla soglia prevista, portando
il training a proseguire �no all'epoca 291. Il monitoraggio in tempo reale
delle metriche ha evidenziato una stagnazione delle prestazioni, con valori
di mAP@50-95 oscillanti intorno a 0.80, inferiori al picco precedentemente
registrato. Di conseguenza, l'addestramento è stato interrotto manualmente
per evitare un inutile dispendio di risorse. Il sistema di checkpointing ha
comunque garantito il salvataggio dei pesi ottimali corrispondenti all'epoca
187 (best.pt), scartando le iterazioni successive.

Data Augmentation Online

La Data Augmentation Online viene e�ettuata ad ogni batch durante il training a
di�erenza dell'augmentation o�ine, che viene applicata selettivamente sulle classi
sottorappresentate per mitigarne lo sbilanciamento. A gestire questo tipo di aug-
mentation è il framework Ultralytics che ha applicato queste trasformazioni diretta-
mente in memoria GPU prima del forward pass. Questo permette di migliorare la
capacità di generalizzazione del modello a nuovi contesti visivi.

La strategia di augmentation online è stata strutturata su tre livelli complemen-
tari: trasformazioni geometriche, variazioni cromatiche e �ltri di image processing
tramite librerie esterne.

1. Augmentation Geometrica e Strutturale (Nativa)

Queste trasformazioni modi�cano la disposizione spaziale e la struttura delle imma-
gini per rendere il modello invariante alla posizione e alla scala:

21

� Mosaic: Il Mosaic è applicato con probabilità 1.0, ed è una tecnica impor-
tante di YOLO. Consiste nel fondere quattro immagini di training in un unico
mosaico, costringendo il modello a riconoscere oggetti in contesti non usuali e
migliorando le performance su oggetti più piccoli.

� Trasformazioni A�ni: Sono state applicate variazioni di scala (±50%,
scale=0.5).

� Translation: ±10% di traslazione, (translate=0.1).

� Flip Orizzontale: Questa trasformazione è stata intenzionalmente disabi-
litata (fliplr=0.0). A di�erenza di altri domini, nella segnaletica stradale la
direzione è una caratteristica semantica distintiva; applicare un ribaltamento
orizzontale altererebbe il signi�cato del segnale (es. trasformando un "Obbli-
go di svolta a sinistra" in "Obbligo di svolta a destra") causando possibile
confusione tra le classi.

� Random Erasing: Con una probabilità del 40% (erasing=0.4), vengono
cancellate casualmente porzioni dell'immagine. Questa tecnica simula le oc-
clusioni (es. segnali coperti da vegetazione o pali), aumentando le capacità del
modello a riconoscere segnali coperti.

2. Augmentation Cromatica (Spazio HSV)

Per garantire robustezza contro le diverse condizioni di illuminazione (sole, om-
bra, crepuscolo), sono state introdotte modi�che nello spazio colore HSV (Hue,
Saturation, Value):

� Saturazione (hsv_s=0.7): Una variazione del ±70% sulla saturazione per-
mette al modello di generalizzare su segnali sbiaditi o estremamente vividi.

� Luminosità (hsv_v=0.4): Una variazione del ±40% di luminosità, simula
diverse condizioni di esposizione solare.

� Tonalità (hsv_h=0.015): Una variazione dell'1.5% sulla tonalità preserva la
semantica del colore (es. il rosso deve restare rosso) ma introduce variabilità
realistica.

3. Integrazione con Albumentations

Il framework è con�gurato per utilizzare anche la libreria Albumentations per ap-
plicare �ltri di image processing speci�ci con una probabilità dell'1% (p = 0.01)
ciascuno. Sebbene rari, questi �ltri agiscono come regolarizzatori �ni:

� Blur e MedianBlur: Introducono sfocature (raggio 3-7px) per simulare
motion blur o difetti di messa a fuoco.

� CLAHE: L'equalizzazione adattiva dell'istogramma migliora il contrasto lo-
cale, utile per segnali in ombra.

� ToGray: Converte l'immagine in scala di grigi, forzando il modello a ricono-
scere le forme indipendentemente dal colore.

22

Monitoraggio Durante il Training

Il framework Ultralytics ha fornito un monitoraggio delle prestazioni durante l'adde-
stramento. Per ogni epoca, sono state registrate le metriche calcolate sul validation
set: Precision, Recall, mean Average Precision mAP@50 e mAP@50-95,
le tre componenti della loss function: box_loss, errore nella regressione dei boun-
ding box; cls_loss, errore di classi�cazione; d�_loss, errore nella localizzazione dei
bounding box intorno alla loro posizione reale, (Distribution Focal Loss). Per ogni
variante addestrata, sono stati generati i gra�ci con tali metriche (si vedano le Figu-
re 3.3, 3.4 e 3.5). I dati relativi a queste metriche sono stati archiviati nei rispettivi
�le results.csv, consentendo successive analisi. In particolare, attraverso una
comparazione delle curve di loss, è possibile osservare che le tre varianti hanno un
comportamento di convergenza simile durante il training, pur con velocità e valori
�nali di�erenti (si vedano le Figure C.1, C.2 e C.3 nell'Appendice C).

Figura 3.3: Risultati della variante nano

Figura 3.4: Risultati della variante small

Figura 3.5: Risultati della variante medium

23

Capitolo 4

Risultati e Analisi

In questo capitolo vengono presentati e discussi i risultati sperimentali ottenuti dal-
l'addestramento dei modelli YOLOv12 sul dataset Street Sign Sense. L'analisi si
articola in una valutazione quantitativa, basata sulle metriche standard di object
detection, e in un'analisi qualitativa volta a esaminare il comportamento dei modelli
in scenari reali.

4.1 Metriche di Valutazione

Per garantire una valutazione rigorosa e comparabile delle prestazioni, sono state
adottate le metriche standard consolidate nel campo dell'object detection. Ciascuna
di queste metriche fornisce informazioni speci�che su aspetti diversi delle capacità
del sistema, e la loro analisi congiunta permette di sviluppare una comprensione
completa delle prestazioni e�ettive dei modelli

� Precision (P): Indica l'a�dabilità delle predizioni positive. Rappresenta
la frazione di rilevamenti corretti rispetto al totale dei rilevamenti e�ettuati,
Precision = TP

TP+FP
.

In termini operativi, questa metrica risponde alla domanda: tra tutti gli og-
getti che il modello ha classi�cato come positivi, quanti lo erano davvero? Una
precision elevata implica un basso numero di falsi positivi, caratteristica estre-
mamente desiderabile in applicazioni di assistenza alla guida dove detection
errate potrebbero causare comportamenti pericolosi del sistema e ridurre la
�ducia dell'utente.

� Recall (R):Misura la capacità del modello di trovare tutti gli oggetti rilevanti.
Rappresenta la frazione di oggetti reali correttamente identi�cati rispetto al
totale degli oggetti presenti nel dataset, Recall = TP

TP+FN
.

Dal punto di vista applicativo, questa metrica risponde alla domanda: tra tutti
i casi realmente positivi, quanti ne ha trovati il modello? Un Recall elevato
indica che il modello non perde oggetti di interesse, aspetto assolutamente
cruciale per applicazioni safety-critical dove la mancata detection di un segnale
di stop o di un limite di velocità potrebbe avere conseguenze estremamente
gravi per la sicurezza.

La metrica più completa e informativa per valutare sistemi di object detection è la
mean Average Precision che integra informazioni su Precision e Recall, su tutto lo
spettro di soglie di con�denza possibili.

24

Il calcolo della mean Average Precision inizia con la costruzione della curva
Precision-Recall per ciascuna classe, ottenuta variando la soglia di con�denza e
calcolando Precision e Recall per ciascun valore di soglia. L'area sotto la curva
Precision-Recall è de�nita come Average Precision. La mean Average Precision è poi
calcolata come media aritmetica delle Average Precision su tutte le classi presenti
nel dataset.

Nel contesto speci�co di YOLO e più in generale dell'object detection, è prassi
consolidata considerare due varianti della mean Average Precision basate su criteri
diversi per determinare quando una detection debba essere considerata corretta.
Una detection viene considerata True Positive se l'intersezione (IoU) tra il bounding
box predetto e il ground truth supera una certa soglia prestabilita. L'Intersection
over Union è de�nita come il rapporto tra l'area di intersezione dei due boxes e l'area
della loro unione, fornendo una misura naturale e intuitiva di quanto accuratamente
il box predetto copre l'oggetto reale.

� mAP@50 (mAP a IoU 0.5): È la media delle precisioni medie (AP) calco-
lata per tutte le classi, considerando una predizione corretta se l'intersezione
sull'unione (IoU) con il ground truth è almeno del 50%. Questa metrica è
indicativa della capacità del modello di localizzare correttamente gli oggetti in
modo "generale".

� mAP@50-95: Considerata la metrica più robusta e completa (standard CO-
CO), calcola la media delle mAP su diverse soglie di IoU (da 0.50 a 0.95 con
incrementi di 0.05). Premia i modelli che non solo individuano l'oggetto, ma
lo localizzano con estrema precisione geometrica.

� F1-Score: Fornisce una misura armonica che bilancia Precision e Recall, un
singolo valore che sintetizza l'equilibrio tra la capacità di non generare falsi
positivi e quella di non perdere oggetti (falsi negativi). L'F1-Score è calco-
lato nel seguente modo: F1 = 2 · Precision·Recall

Precision+Recall
. Questa metrica risulta utile

quando si cerca una con�gurazione bilanciata che non privilegi nessuna delle
due metriche, ma piuttosto ottimizzi il compromesso tra le due. L'F1-Score
raggiunge il suo valore massimo quando entrambe le metriche sono elevate e
perfettamente bilanciate.

� Tempo di Inferenza: Il tempo medio necessario al modello per processa-
re una singola immagine, misurato in millisecondi (ms). È un indicatore per
valutare l'applicabilità pratica del sistema in scenari real-time. Da questa me-
trica è possibile ottenere il frame rate teorico (FPS) raggiungibile dal modello,
FPS = 1000

Tempo di Inferenza (ms)
. Per applicazioni che operano tipicamente a trenta

frame per secondo, il tempo di inferenza deve essere inferiore a 33 millisecondi
per frame per garantire elaborazione in tempo reale senza introdurre latenze
inaccettabili.

4.2 Risultati Quantitativi

La Tabella sottostante riassume le prestazioni �nali ottenute dalle tre varianti di
YOLO12 (Nano, Small, Medium) sul validation set. I valori riportati si riferiscono
al miglior checkpoint (best.pt) salvato durante il training.

25

Modello Precision Recall F1-Score mAP@50 mAP@50-95 Inferenza (ms)* Dimensione

YOLO12n 0.849 0.819 0.825 0.870 0.760 5.4 5.32 MB
YOLO12s 0.887 0.846 0.853 0.904 0.796 12.6 18.1 MB
YOLO12m 0.882 0.859 0.856 0.916 0.811 31.7 77.6 MB

Confronto delle prestazioni dei modelli YOLO12.

*Tempi di inferenza misurati su GPU NVIDIA T4

Analisi Comparativa

I dati evidenziano un chiaro trade-o� tra complessità computazionale e accuratezza,
tipico delle architetture di deep learning, ma con alcune speci�cità interessanti legate
all'architettura YOLO12.

YOLO12n: E�cienza

La varianteNano si distingue per la sua straordinaria leggerezza. Con un peso di soli
5.32 MB e un tempo di inferenza di appena 5.4 ms (corrispondenti a un throughput
teorico di circa 185 FPS), è la scelta ideale per dispositivi edge con risorse limitate.
La velocità non compromette la qualità: una mAP@50-95 di 0.760 e un F1-Score di
0.825 indicano che il modello è pienamente capace di gestire la complessità del task, e
sebbene le metriche di accuratezza siano le più basse del gruppo, il modello mantiene
comunque una precisione media superiore all'84% (Average Precision di 0.849) e una
Recall di 0.819 superando ampiamente l'80%, dimostrandosi abbastanza capace per
la sua taglia.

YOLO12s: Il Compromesso Bilanciato

Il modello Small emerge come la con�gurazione più equilibrata, spicca in partico-
lare per la Precision di 0.887, che risulta essere la più alta tra i tre modelli testati.
Questo suggerisce che è la scelta migliore per minimizzare i falsi positivi. Rispetto
alla variante nano, o�re un incremento del 3.6% nella mAP@50-95 salendo così a
0.796, e ad un F1-Score che supera la soglia di 0.85. Questo guadagno di accu-
ratezza comporta però un raddoppio del tempo di inferenza a 12.6 ms e ad una
crescita della dimensione del modello a 18.1 MB. Tuttavia, con circa 79 FPS teorici,
rimane ampiamente nel range del real-time, rappresentando il miglior equilibrio per
applicazioni generali.

YOLO12m: Massima Accuratezza

La variante Medium raggiunge, come previsto, le vette più alte di accuratezza,
con una mAP@50 di 0.916 e una mAP@50-95 di 0.811. È interessante notare che,
mentre la precisione pura è leggermente inferiore al modello Small (0.838 vs 0.846),
l'elevato Recall a 0.859 indica che è il modello che "perde" meno segnali in assoluto.
Questo indica che il modello Medium riesce a trovare più segnali di�cili, questo
infatti spiega la mAP complessiva più alta. Tuttavia, il costo computazionale è
signi�cativo: il modello pesa 77.6 MB (quattro volte la versione Small) e il tempo di
inferenza sale a 31.7 ms (circa 31 FPS). Nonostante sia in grado di operare in real-
time, il margine è molto più ridotto, rendendolo idoneo solo per hardware dotato di
accelerazione GPU dedicata per garantire la �uidità necessaria.

26

Figura 4.1: Confronto gra�co delle metriche mAP tra le varianti.

Figura 4.2: Confronto gra�co delle metriche Avg-Precision, Avg-Recall e F1-Score
tra le varianti.

27

Dettaglio per Classe: Matrici di Confusione

Le matrici di confusione normalizzate di ciascuna variante del modello, sono utili
per approfondire la distribuzione degli errori tra le 63 classi. Come osservabile nelle
Figure 4.3, 4.4 e 4.5, l'asse delle ordinate rappresenta le classi reali (True Label),
mentre l'asse delle ascisse indica le predizioni del modello (Predicted Label).
Una diagonale principale marcata e continua indica un'elevata accuratezza di classi-
�cazione. I valori al di fuori della diagonale evidenziano invece le misclassi�cations.

� YOLOv12n: Sebbene la diagonale sia ben de�nita, si nota una maggiore
dispersione (rumore) nelle aree fuori diagonale, in particolare tra classi visiva-
mente simili (es. varianti dei limiti di velocità) e verso la classe background
(falsi negativi), confermando i limiti di capacità del modello più piccolo.

� YOLOv12s e YOLOv12m: All'aumentare della complessità del modello,
la matrice si pulisce progressivamente. Nel modello Medium, la dispersione
fuori diagonale è minima, indicando una capacità superiore nel discriminare
tra feature �ni che distinguono segnali della stessa categoria.

Figura 4.3: Matrice di confusione normalizzata per YOLO12n.

28

Figura 4.4: Matrice di confusione normalizzata per YOLO12s.

Figura 4.5: Matrice di confusione normalizzata per YOLO12m.

29

4.3 Analisi Qualitativa

L'ispezione visiva delle predizioni sul test set, incrociata con l'analisi delle matrici
di confusione, ha rivelato un comportamento di�erente tra i vari modelli. Sebbene
le metriche globali siano positive, l'analisi qualitativa evidenzia come le prestazioni
non siano uniformi, ma variano in funzione della frequenza delle classi nel dataset e
della complessità del segnale.

Capacità di Astrazione

Uno degli aspetti positivi emersi durante i test è la sorprendente robustezza del
modello in condizioni più o meno critiche.

� Segnali Parziali e Occlusi: I modelli hanno dimostrato di saper rilevare cor-
rettamente segnali anche quando parzialmente tagliati dai bordi dell'immagine
o oscurati da vegetazione o altri veicoli. Questo suggerisce che le reti convo-
luzionali hanno imparato a riconoscere le classi basandosi su feature parziali
piuttosto che necessitare della sagoma intera. Occlusioni che coprono oltre il
50% del segnale vengono rilevate anche dal modello Nano. (Vedi Figura 4.6a)

� Invarianza alla Scala e Distanza: Il sistema riesce a localizzare sia segna-
li molto vicini che occupano una porzione signi�cativa del frame sia oggetti
distanti con un'occupazione di pochi pixel nell'immagine, confermando la ca-
pacità delle reti di estrarre feature su diverse scale spaziali. Un ruolo deter-
minante è stato svolto dall'architettura multi-scala implementata nel Neck e
nell'Head di YOLO12, che si è dimostrata e�cace nella gestione delle variazioni
di dimensione.

� Tolleranza alle Prospettive: La capacità di generalizzazione dei modelli è
stata valutata anche rispetto alle prospettive derivate dall'angolazione degli
scatti. I segnali con angolazioni laterali, anche se non signi�cative, sono state
riconosciuti correttamente.

� Condizioni Ambientali: Inoltre, i segnali vengono individuati con coerenza
sia in condizioni di controluce che in scenari crepuscolari, dimostrando un'ot-
tima invarianza fotometrica. Tuttavia, in presenza di scarsa illuminazione o
contrasti estremi, il con�dence score delle predizioni tende a diminuire, pur
mantenendo corretta la localizzazione dell'oggetto. (Vedi Figura 4.6b)

(a) Esempio di segnale occluso a sinistra del-

l'immagine, rilevamento e�ettuato dal model-

lo nano

(b) Esempio segnale in condizioni ambien-

tali con forte contrasto

Figura 4.6

30

Impatto della Frequenza delle Classi

Nonostante gli sforzi di bilanciamento e data augmentation, il dataset ri�ette inevi-
tabilmente la frequenza naturale dei segnali nel mondo reale. L'analisi qualitativa
conferma una correlazione diretta tra la frequenza di una classe nel training set e la
robustezza del rilevamento:

� Classi Frequenti: Segnali più comuni vengono rilevati con elevata con�denza
e precisione di localizzazione (bounding box aderenti), anche in condizioni
di�cili.

� Classi Sottorappresentate: Per i segnali più rari, si osserva un calo delle
prestazioni. In questi casi, il modello tende a essere più incerto (con�dence
score bassi) o a mancare del tutto il rilevamento (False Negatives).

Ambiguità e Confusioni Inter-classe

Il sistema dimostra una buona capacità discriminante, evitando generalmente di con-
fondere oggetti simili (come cartelloni pubblicitari rotondi o triangolari) con segnali
stradali. Tuttavia gli errori di classi�cazione sono presenti. L'analisi delle predizioni
errate rispecchia le criticità emerse nelle matrici di confusione. Le di�coltà mag-
giori si concentrano su segnali che condividono una forte somiglianza visiva (forma
e colore) ma di�eriscono per i dettagli interni:

� Limiti di Velocità: Si sono osservate confusioni occasionali tra limiti visivamen-
te simili (es. 80 km/h vs 60 km/h) quando il segnale è distante o la risoluzione
è bassa.

� Spesso, l'aggiustamento della soglia di con�denza per l'inferenza permette di
�ltrare queste predizioni errate, ma in alcuni casi l'errore persiste con score
elevati.

Il modello cattura correttamente la semantica generale ("è un limite di velocità"), ma
può fallire nella speci�ca sottoclasse. Si tratta di errori che, in un contesto operativo,
potrebbero essere mitigati dal tracciamento del segnale su più frame di�erenti.
In sintesi, l'analisi qualitativa conferma che il sistema è a�dabile per la segnaletica
critica e comune, mostrando una notevole capacità di generalizzazione su segnali
degradati o parziali, seppur con sporadiche confusioni tra sottoclassi o mancate
rilevazioni.

31

Capitolo 5

Discussione

5.1 Interpretazione dei Risultati e Scenari Applica-

tivi

L'analisi comparativa delle tre varianti di YOLO12 ha evidenziato come la scelta del
modello non possa prescindere dal contesto applicativo speci�co. I dati confermano
che non esiste un vincitore assoluto, ma soluzioni ottimali per vincoli diversi:

� YOLO12n (Edge-First): Con un tempo di inferenza di soli 5.4 ms, que-
sto modello si dimostra la scelta migliore per l'edge computing a bassissimo
consumo, l'opzione praticabile per dispositivi embedded con memorie limita-
te, o per sistemi che richiedono frame rate elevatissimi. Sebbene paghi in
termini di accuratezza sulle classi più di�cili, la sua precisione media resta
sorprendentemente alta per la sua dimensione.

� YOLO12s (Best Balance): Si conferma il punto di equilibrio ideale per la
maggior parte delle applicazioni di assistenza alla guida su hardware standard.
Il guadagno di accuratezza rispetto alla variante nano è tangibile, specialmente
nella riduzione dei falsi positivi (Precision più alta del gruppo). Preferibile
quindi in sistemi di sicurezza o ADAS dove un falso positivo è fastidioso o
pericoloso (es. frenate fantasma causate da rilevamenti errati). Mantiene
allo stesso tempo una velocità di inferenza pienamente nel range del real-time,
compatibile con i requisiti dei moderni sistemi ADAS, in cui i limiti di memoria
e di consumo energetico sono trascurabili. Sebbene la variante nano sia stata
de�nita come la più e�ciente per l'edge computing, i suoi 185 FPS diventano
inutili se si necessita un livello di a�dabilità superiore e si dispone di hardware
con GPU dedicata.

� YOLO12m (High-Accuracy): Rappresenta la scelta obbligata quando la
priorità è la massimizzazione del Recall e la localizzazione precisa. Con un
tempo medio di inferenza di 31.7 ms, il modello riesce a superare la soglia
del real-time, con un margine estremamente ridotto, e fatica a garantire i 30
FPS stabili richiesti per un video �uido. A di�erenza delle varianti più leggere
necessita di hardware dotato di accelerazione GPU dedicata (superiore alla
T4), poiché qualsiasi calo di risorse porterebbe il frame rate sotto la soglia
di �uidità. Rimane comunque la soluzione di riferimento per scenari di Cloud
Computing e di gestione in modalità o�ine (batch processing), dove la stabilità
degli FPS è secondaria rispetto all'accuratezza del rilevamento.

32

5.2 Analisi delle Criticità Operative

Un aspetto rilevante emerso durante il progetto riguarda la complessità di gestione
del training. L'esperienza con vari addestramenti e�ettuati con YOLO12m ha
dimostrato che l'a�damento esclusivo agli automatismi del framework come l'early
stopping può rivelarsi insu�ciente in scenari di training frammentati che richiedono
la ripresa dello stato (resume).

Nello speci�co, è stato identi�cato un comportamento critico legato all'interru-
zione forzata della prima sessione e il successivo riavvio, che hanno comportato il
reset del contatore interno dell'early stopping. Di conseguenza, nella seconda sessio-
ne il conteggio della patience è ripartito da zero. Questo ha impedito all'algoritmo di
arrestare automaticamente il training, che è proseguito �no all'epoca 291 nonostante
il picco di performance (best mAP) fosse stato già ottenuto all'epoca 187.

Questo evidenzia l'importanza di una supervisione attiva e di un'analisi dei log.
In particolare in progetti complessi distribuiti su più sessioni, la de�nizione della
patience e i criteri di stop devono essere calibrati tenendo conto non solo della
stabilità delle metriche, ma anche dei meccanismi di reinizializzazione degli stati
interni dell'ottimizzatore al momento del ripristino.

5.3 Limiti del Lavoro

Per garantire una corretta interpretazione dei risultati, è doveroso esplicitare i limiti
metodologici dello studio:

� Rappresentatività del Dataset: Sebbene il dataset Street Sign Set (7000+
immagini) sia abbastanza valido, rimane limitato rispetto ai benchmark di
dataset che contano decine di migliaia di campioni. Lo sbilanciamento naturale
delle classi , seppur mitigato dall'augmentation, in�uenza le performance sulle
categorie di segnali più rari.

� Vincoli Computazionali e Temporali: L'utilizzo di piattaforme cloud per
l'addestramento ha imposto limiti stringenti sul tempo di esecuzione continuo.
Questo vincolo ha impedito un'esplorazione esaustiva dello spazio di ricerca
e ha reso necessario frammentare il training dei modelli più complessi, intro-
ducendo s�de operative nella gestione della convergenza e nel ripristino degli
stati.

5.4 Sviluppi Futuri

Alla luce dei risultati e dei limiti discussi, le direzioni future di ricerca dovrebbero
concentrarsi su:

� Consolidamento del Test Set: L'attuale set di test, conta 160 immagini
e 288 annotazioni, concentrato principalmente sulle classi target. Un obiet-
tivo primario sarà l'acquisizione di un test set più ampio (almeno 500-1000
immagini).

� Espansione del Dataset: Acquisizione mirata di nuovi esempi per le classi
di coda (quelle con meno di 100 istanze) per livellare le performance di Recall
tra le diverse categorie.

33

� Copertura degli Scenari Critici: Inclusione di scenari meteorologici critici
attualmente assenti (nebbia �tta, neve, pioggia battente) per testare i limiti
di robustezza del modello.

� Prototipazione: Implementazione del modello su un dispositivo edge in-
stallato su un veicolo per valutare le prestazioni sul campo, analizzando la
robustezza rispetto a condizioni non rappresentate nel dataset attuale.

34

Capitolo 6

Demo Web

L'ultima fase del progetto Street Sign Sense ha previsto lo sviluppo di una demo web
per dimostrare l'e�cacia e la portabilità dei modelli YOLO12 addestrati. L'obiettivo
era creare un ambiente di inferenza accessibile, capace di operare interamente client-
side (direttamente nel browser dell'utente).

Accesso al Codice e alla Demo Live

Il codice sorgente completo dell'applicazione web e l'implementazione live della de-
mo sono stati resi disponibili pubblicamente, garantendo la piena trasparenza e
riproducibilità del sistema, accessibili ai seguenti indirizzi:

� Repository GitHub:

https://github.com/AlessandroFerrante/StreetSignSense/

� Demo Live (Web Page):

https://alessandroferrante.github.io/StreetSignSense/

6.1 Architettura del Sistema

L'applicazione è stata realizzata come una Single Page Application (SPA), proget-
tata per essere leggera e responsiva. Il sistema è costituito da TensorFlow.js, una
libreria open-source che permette l'esecuzione di modelli di Machine Learning in
JavaScript. La libreria usufruisce della tecnologia WebGL, TensorFlow.js consente
così di accelerare i calcoli matriciali necessari per le reti neurali convoluzionali uti-
lizzando la GPU del dispositivo ospite (smartphone, laptop o desktop), rendendo
possibile l'object detection in tempo reale senza hardware dedicato.

6.2 Pipeline di Elaborazione

Il funzionamento della demo segue una pipeline logica, che adatta i vari input alle
speci�che richieste dall'architettura YOLO12.

Conversione e Caricamento del Modello

I modelli addestrati in PyTorch (formato .pt) sono stati convertiti nel forma-
to web_model compatibile con TensorFlow.js (una struttura composta da un �le
model.json contenente la topologia del grafo (o architettura della rete) e i �le
binari contenenti i pesi).

35

https://github.com/AlessandroFerrante/StreetSignSense/
https://alessandroferrante.github.io/StreetSignSense/

L'applicazione permette all'utente di selezionare quale variante caricare:

� YOLO12n (Nano): Ideale per dispositivi mobili e bassa latenza, privilegia
la velocità.

� YOLO12s (Small): Un buon compromesso tra velocità e precisione.

� YOLO12m (Medium): La versione più accurata, ma necessita di maggiori
risorse hardware.

Il caricamento avviene in modalità asincrona tramite la funzione tf.loadGraphModel,
successivamente viene eseguita un'inferenza su un tensore di zeri per inizializzare gli
shader WebGL e allocare la memoria necessaria.

Pre-processing dell'Input

Le reti neurali richiedono che le immagini abbiano una forma e dimensione speci�ca
(in questo caso 640× 640 pixel). Prima di essere analizzata, ogni immagine subisce
le seguenti trasformazioni:

1. Ridimensionamento: L'immagine sorgente (o il frame video) viene ridimen-
sionata mantenendo le proporzioni originali.

2. Padding: Vengono aggiunti i bordi per raggiungere la dimensione target di
input del modello (640× 640 pixel). Fondamentale per evitare distorsioni che
comprometterebbero la capacità della rete di riconoscere le forme dei segnali.

3. Normalizzazione: I valori dei pixel vengono normalizzati nel range [0, 1] e
convertiti in un tensore �oat a 32 bit, aggiungendo la dimensione del batch
(1× 640× 640× 3).

Inferenza e Risultati

L'inferenza viene eseguita tramite il metodo model.executeAsync. Una volta che
il modello ha analizzato l'immagine, produce un output grezzo (tensori contenen-
ti coordinate dei box, punteggi di con�denza e probabilità delle classi) che viene
elaborato per ottenere i risultati:

� Filtraggio: Vengono scartate le predizioni con un punteggio di con�denza
inferiore alla soglia de�nita dall'utente (default 0.40).

� Rescaling: Le coordinate dei bounding box predetti, nell'immagine 640×640
(incluso il padding), vengono rimappate per adattarsi all'immagine originale.

� Visualizzazione: I bounding box vengono disegnati attorno ai segnali rico-
nosciuti, etichettandoli con il nome della classe e la percentuale di probabilità.

6.3 Funzionalità e Interfaccia Utente

L'applicazione o�re diverse modalità d'uso per testare il modello in vari scenari con
un controllo sui parametri di inferenza.

36

Gestione degli Input

Il sistema supporta tre modalità di acquisizione:

� Upload File: Permette di analizzare foto o video salvati sul dispositivo.

� Webcam/Camera: Accesso diretto alla fotocamera per analizzare l'ambiente
in tempo reale, o scattare una foto all'istante.

� Demo Image: Carica diverse immagini di test prede�nite, per veri�care le
capacità dei modelli.

Pannello di Controllo

L'utente può interagire in tempo reale con i parametri del modello tramite slider
dedicati:

� Con�dence Threshold: Regola la sensibilità del modello.

� IoU Threshold: Aiuta a gestire il �ltraggio delle sovrapposizioni.

� Max Detections: Permette di impostare il numero massimo di detection da
visualizzare.

Metriche in Tempo Reale

Per valutare le prestazioni, l'interfaccia mostra:

� FPS: Indicatore della �uidità dello stream.

� Tempo di Inferenza: Tempo in millisecondi per l'inferenza di un singolo
frame.

� Conteggio Oggetti: Numero di segnali rilevati nel frame corrente.

Figura 6.1: Interfaccia Demo Web

37

6.4 Considerazioni sulle Prestazioni Web

I test e�ettuati tramite la demo web confermano le osservazioni del capitolo prece-
dente. La variante nano si dimostra performante su dispositivi standard, garantendo
maggiore �uidità, mentre la variante medium, pur essendo più precisa, mostra un
incremento del tempo di inferenza, risultando più lenta. La variante small confer-
ma la sua posizione, o�rendo un'ottima accuratezza e mantenendo un frame rate
accettabile.

38

Capitolo 7

Conclusioni

Il progetto Street Sign Sense è nato con l'intento di esplorare l'object detection
applicata alla sicurezza stradale. Al termine dello sviluppo, è possibile a�ermare
che gli obiettivi pre�ssati non solo sono stati soddisfatti, ma in diversi aspetti le
aspettative iniziali sono state superate, in particolare per quanto riguarda l'e�cienza
operativa dei modelli.

Dal punto di vista applicativo, si può confermare la fattibile integrazione di ar-
chitetture avanzate come YOLO12 all'interno di sistemi ADAS (Advanced Driver
Assistance Systems). La capacità dei modelli di operare in tempo reale, mante-
nendo un'elevata accuratezza, dimostra che la tecnologia attuale può supportare
attivamente il conducente, contribuendo alla sicurezza stradale.

Oltre ai risultati tecnici, questo progetto ha rappresentato un'eccellente esperien-
za formativa. A�rontare l'intero ciclo di vita di un sistema di Machine Learning,
dalla raccolta dei dati al deployment, ha permesso di comprendere in profondità
non solo il funzionamento teorico delle Reti Neurali Convoluzionali e dei moder-
ni meccanismi di Attenzione, ma anche le s�de pratiche che caratterizzano questo
ambito.

Un aspetto signi�cativo è stato l'apprendimento derivato dalla gestione diretta
dei dati. Il lavoro di costruzione, pulizia e arricchimento del dataset e l'attenzione
data all'integrazione manuale di oltre 3000 nuove immagini e nelle annotazioni hanno
reso evidente come la qualità sia fondamentale per ogni sistema intelligente e�cace.

Inoltre, il progetto è stato fondamentale per mettere in pratica e a�nare la ca-
pacità di leggere e interpretare le metriche con piena consapevolezza. Passare dalla
teoria all'analisi critica dei gra�ci di training e delle matrici ha permesso di svilup-
pare una visione analitica per comprendere non solo quanto un modello performi
bene, ma perché si comporti in un certo modo.

In conclusione, sono pienamente soddisfatto del lavoro svolto, dei risultati tecnici
raggiunti e dall'esperienza derivata. Questo percorso ha consolidato il mio interesse
nel settore, fornendomi le competenze e una visione critica necessarie per progetti
futuri. L'auspicio è che il materiale prodotto in questo studio possa costituire una
base valida per nuovi utilizzi e ulteriori sviluppi.

39

Capitolo 8

Riproducibilità e Risorse del

Progetto

Per assicurare la piena trasparenza, accessibilità e riproducibilità del lavoro svolto,
tutti i materiali principali del progetto Street Sign Sense sono stati resi disponibili
pubblicamente.

Il progetto è disponibile sulla piattaforma GitHub (per il codice sorgente e l'ap-
plicazione web) e la piattaforma Kaggle (per il dataset e gli ambienti di training
originali).

� Codice Sorgente e Demo Live (GitHub): Il repository contiene il codice
sorgente per l'addestramento, gli script di analisi e l'implementazione completa
della demo web.

Repository GitHub:

https://github.com/AlessandroFerrante/StreetSignSense/

Demo Web (Pagina GitHub Pages):

http://alessandroferrante.github.io/StreetSignSense/

� Dataset e Ambienti di Training (Kaggle): Il materiale ospitato su Kaggle
garantisce l'accesso diretto all'ambiente di training utilizzato.

Dataset Street Sign Set : Alessandro Ferrante. (2025). Street Sign Set
[Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/8410752

https://www.kaggle.com/datasets/ferrantealessandro/street-sign-set/

Notebooks di Training Originali:

https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12n

https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12s

https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12m

Modelli:

https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12n/

https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12s/

https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12m/

40

https://github.com/AlessandroFerrante/StreetSignSense/
http://alessandroferrante.github.io/StreetSignSense/
https://doi.org/10.34740/KAGGLE/DS/8410752
https://www.kaggle.com/datasets/ferrantealessandro/street-sign-set/
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12n
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12s
https://www.kaggle.com/code/ferrantealessandro/streetsignsense-yolo12m
https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12n/
https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12s/
https://www.kaggle.com/models/ferrantealessandro/streetsignsensey12m/

Bibliogra�a

[1] Tian, Yunjie and Ye, Qixiang and Doermann, David (2025). YO-
LOv12: Attention-Centric Real-Time Object Detectors. arXiv preprint
arXiv:2502.12524. Technical Report available at https://github.com/

sunsmarterjie/yolov12.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look On-
ce: Uni�ed, Real-Time Object Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 779-788.

[3] Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLO (Version 8.3.229)
[Software]. Disponibile su https://github.com/ultralytics/ultralytics e
documentazione su https://docs.ultralytics.com/.

[4] Dao, T., et al. (2022). FlashAttention: Fast and Memory-E�cient Exact At-
tention with IO-Awareness. arXiv preprint arXiv:2205.14135. (Tecnologia citata
nell'architettura YOLO12).

[5] Lin, T. Y., et al. (2014). Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV).

[6] Everingham, M., et al. (2010). The Pascal Visual Object Classes (VOC)
Challenge. International Journal of Computer Vision. (Riferimento per la
standardizzazione delle metriche IoU e mAP@50).

[7] Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., &
Kalinin, A. A. (2020). Albumentations: Fast and Flexible Image Augmentations.
Information, 11(2), 125.

[8] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Opti-
mal Speed and Accuracy of Object Detection. (Introduce il concetto di Mosaic
Augmentation).

[9] Farinella, G. M., & Leonardi, R. (2024). Teaching material for the Machi-
ne Learning course. Department of Mathematics and Computer Science -
University of Catania

[10] Alessandro Ferrante. (2025). Street Sign Set [Data set]. Kaggle. https://doi.
org/10.34740/KAGGLE/DS/8410752

Sitogra�a e Risorse Online

� Ultralytics Documentation: https://docs.ultralytics.com/ - Docu-
mentazione u�ciale del framework utilizzato per il training.

41

https://github.com/sunsmarterjie/yolov12
https://github.com/sunsmarterjie/yolov12
https://github.com/ultralytics/ultralytics
https://docs.ultralytics.com/
https://doi.org/10.34740/KAGGLE/DS/8410752
https://doi.org/10.34740/KAGGLE/DS/8410752
https://docs.ultralytics.com/

� Kaggle: https://www.kaggle.com/ - Piattaforma utilizzata per il reperi-
mento del dataset iniziale e l'ambiente di calcolo (GPU T4).

� Robo�ow: https://roboflow.com/ - Strumenti utilizzati per l'annotazione,
la gestione e il pre-processing del dataset.

� PyTorch: https://pytorch.org/ - Framework di Deep Learning sottostan-
te.

42

https://www.kaggle.com/
https://roboflow.com/
https://pytorch.org/

Appendice A

Elenco Completo delle Classi del

Dataset

Il dataset Street Sign Set comprende le seguenti 63 classi di segnali stradali, come
de�nite nel �le data.yaml:

� prio_give_way: Dare precedenza

� prio_stop: Stop

� prio_priority_road: Strada con diritto di precedenza

� forb_speed_over_5: Limite di velocità 5 km/h

� forb_speed_over_10: Limite di velocità 10 km/h

� forb_speed_over_20: Limite di velocità 20 km/h

� forb_speed_over_30: Limite di velocità 30 km/h

� forb_speed_over_40: Limite di velocità 40 km/h

� forb_speed_over_50: Limite di velocità 50 km/h

� forb_speed_over_60: Limite di velocità 60 km/h

� forb_speed_over_70: Limite di velocità 70 km/h

� forb_speed_over_80: Limite di velocità 80 km/h

� forb_speed_over_90: Limite di velocità 90 km/h

� forb_speed_over_100: Limite di velocità 100 km/h

� forb_speed_over_110: Limite di velocità 110 km/h

� forb_speed_over_120: Limite di velocità 120 km/h

� forb_speed_over_130: Limite di velocità 130 km/h

� forb_no_entry: Divieto di accesso

� forb_no_parking: Divieto di sosta

� forb_no_stopping: Divieto di fermata

43

� forb_overtake_car: Divieto di sorpasso (auto)

� forb_overtake_trucks: Divieto di sorpasso (camion)

� forb_trucks: Divieto di transito (camion)

� forb_turn_left: Divieto di svoltare a sinistra

� forb_turn_right: Divieto di svoltare a destra

� forb_weight_over_3.5t: Divieto di transito (peso > 3.5t)

� forb_weight_over_7.5t: Divieto di transito (peso > 7.5t)

� forb_u_turn: Divieto di inversione a U

� info_bus_station: Fermata autobus

� info_crosswalk: Attraversamento pedonale (informazione)

� info_highway: Inizio autostrada

� info_one_way: Senso unico

� info_parking: Parcheggio

� info_taxi_parking: Parcheggio taxi

� warn_children: Pericolo bambini

� warn_construction: Lavori in corso

� warn_crosswalk: Attraversamento pedonale (pericolo)

� warn_cyclists: Pericolo ciclisti

� warn_left_curve: Curva a sinistra

� warn_right_curve: Curva a destra

� warn_domestic_animals: Pericolo animali domestici

� warn_other_dangers: Altri pericoli

� warn_poor_road_surface: Strada deformata

� warn_roundabout: Intersezione con rotatoria

� warn_sharp_left_curve: Doppia curva con la prima a sinistra

� warn_sharp_right_curve: Doppia curva con la prima a destra

� warn_slippery_road: Strada sdrucciolevole

� warn_hump: Dosso

� warn_traffic_light: Semaforo

� warn_tram: Tram

� warn_two_way_traffic: Doppio senso di circolazione

44

� warn_wild_animals: Pericolo animali selvatici

� mand_bike_lane: Pista ciclabile

� mand_go_left: Obbligo di svoltare a sinistra

� mand_go_left_right: Preavviso di direzione obbligatoria sinistra o destra

� mand_go_right: Obbligo di svoltare a destra

� mand_go_straight: Obbligo di andare dritto

� mand_go_straight_left: Direzioni consentite dritto e sinistra

� mand_go_straight_right: Direzioni consentite dritto e destra

� mand_pass_left: Passaggio obbligatorio a sinistra

� mand_pass_left_right: Passaggio consentito a sinistra o destra

� mand_pass_right: Passaggio obbligatorio a destra

� mand_roundabout: Intersezione con circolazione rotatoria (obbligo)

45

Appendice B

Dettagli Ambiente di Sviluppo e

Codice

In questa appendice vengono riportati i dettagli tecnici relativi alla con�gurazione
dell'ambiente di sviluppo e agli script utilizzati per l'addestramento dei modelli. Il
codice completo, incluse le celle di esecuzione e i log dettagliati, è consultabile anche
nei notebook originali denominati streetsignsense-yolo12n, streetsignsense-yolo12s
e streetsignsense-yolo12m, presenti nella cartella principale del progetto.

B.1 Installazione dipendenze

L'installazione delle dipendenze viene eseguita all'avvio nel seguente modo:

1 !pip install -r requirements.txt

B.2 Veri�ca dell'Ambiente

Prima di avviare qualsiasi operazione, è buona norma veri�care la corretta con�-
gurazione dell'ambiente e la disponibilità delle risorse hardware (GPU). Il seguente
snippet utilizza le API di Ultralytics per un controllo:

1 import ultralytics

2 ultralytics.checks ()

3 from ultralytics import YOLO

4 import yaml

46

B.3 Generazione della Con�gurazione del Dataset

Per garantire la riproducibilità e l'indipendenza dai percorsi locali, il �le di con�gu-
razione data.yaml è stato generato programmaticamente all'interno del notebook.
Questo script de�nisce i percorsi assoluti per i set di training, validation e test, e
mappa gli indici numerici ai nomi delle 63 classi.

1 dataset_config = {

2 'train': '/StreetSignSet/train/images ',

3 'val': '/StreetSignSet/valid/images ',

4 'test': '/StreetSignSet/test/images ',

5 'nc': 63,

6 'names': ['prio_give_way ', 'prio_stop ', 'prio_priority_road ', '

forb_speed_over_5 ', 'forb_speed_over_10 ', 'forb_speed_over_20 ',

'forb_speed_over_30 ', 'forb_speed_over_40 ', 'forb_speed_over_50 '

, 'forb_speed_over_60 ', 'forb_speed_over_70 ', '

forb_speed_over_80 ', 'forb_speed_over_90 ', 'forb_speed_over_100 '

, 'forb_speed_over_110 ', 'forb_speed_over_120 ', '

forb_speed_over_130 ', 'forb_no_entry ', 'forb_no_parking ', '

forb_no_stopping ', 'forb_overtake_car ', 'forb_overtake_trucks ',

'forb_trucks ', 'forb_turn_left ', 'forb_turn_right ', '

forb_weight_over_3 .5t', 'forb_weight_over_7 .5t', 'forb_u_turn ',

'info_bus_station ', 'info_crosswalk ', 'info_highway ', '

info_one_way ', 'info_parking ', 'info_taxi_parking ', '

warn_children ', 'warn_construction ', 'warn_crosswalk ', '

warn_cyclists ', 'warn_left_curve ', 'warn_right_curve ', '

warn_domestic_animals ', 'warn_other_dangers ', '

warn_poor_road_surface ', 'warn_roundabout ', '

warn_sharp_left_curve ', 'warn_sharp_right_curve ', '

warn_slippery_road ', 'warn_hump ', 'warn_traffic_light ', '

warn_tram ', 'warn_two_way_traffic ', 'warn_wild_animals ', '

mand_bike_lane ', 'mand_go_left ', 'mand_go_left_right ', '

mand_go_right ', 'mand_go_straight ', 'mand_go_straight_left ', '

mand_go_straight_right ', 'mand_pass_left ', 'mand_pass_left_right

', 'mand_pass_right ', 'mand_roundabout ']

7 }

8

9 with open('data.yaml', 'w') as f:

10 yaml.dump(dataset_config , f)

11

12 !cat data.yaml

47

B.4 Script di Addestramento

Di seguito sono riportati gli script completi utilizzati per avviare il training delle tre
varianti. Ogni script speci�ca gli iperparametri discussi nel Capitolo 3. Si noti che
il codice è replicato nei rispettivi notebook di progetto per garantire la tracciabilità
di ogni esperimento.

1 model = YOLO('yolo12n.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 device='0,1',

10 batch =140,

11 fliplr =0.0,

12 name='yolo12n_run ',

13 project='streetsignsense '

14)

1 model = YOLO('yolo12s.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 name='yolo12s_run ',

10 project='streetsignsense ',

11 device='0,1',

12 batch =80,

13 fliplr =0.0

14)

1 model = YOLO('yolo12m.pt')

2

3 results = model.train(

4 data='data.yaml',

5 imgsz =640,

6 epochs =600,

7 patience =100,

8 save_period =50,

9 name='yolo12m_run ',

10 project='streetsignsense ',

11 device='0,1',

12 batch =40,

13 fliplr =0.0

14)

48

B.5 Script di Validazione

Lo script di validazione utilizzato per valutare le prestazioni del modello sul set di
validazione (valid) e calcola le metriche riportate nel Capitolo 4.

1 from ultralytics import YOLO

2 modelN = YOLO("/streetsignsense/yolo12n_run/weights/best.pt")

3 resultN = modelN.val(data="data.yaml", device='0,1')

4 print("\n\nmAP50 -95:",resultN.box.map) # map50 -95

5 print("mAP -50:",resultN.box.map50) # map50

6 print("mAP -75:",resultN.box.map75) # map75

7 print("Average Precision: ", np.mean(resultN.box.p)) #

precision

8 print("Average Recall: ",np.mean(resultN.box.r)) # recall

9 print("Average F1: ",np.mean(resultN.box.f1)) # f1score

1 from ultralytics import YOLO

2 modelS = YOLO("/streetsignsense/yolo12s_run/weights/best.pt")

3 resultS = modelS.val(data="data.yaml", device='0,1')

4 print("\n\nmAP50 -95:",resultS.box.map) # map50 -95

5 print("mAP -50:",resultS.box.map50) # map50

6 print("mAP -75:",resultS.box.map75) # map75

7 print("Average Precision: ", np.mean(resultS.box.p)) #

precision

8 print("Average Recall: ",np.mean(resultS.box.r)) # recall

9 print("Average F1: ",np.mean(resultS.box.f1)) #f1score

1 from ultralytics import YOLO

2 modelM = YOLO("/streetsignsense/yolo12m_run/weights/best.pt")

3 resultM = modelM.val(data="data.yaml", device='0,1')

4 print("\n\nmAP50 -95:",resultM.box.map) # map50 -95

5 print("mAP -50:",resultM.box.map50) # map50

6 print("mAP -75:",resultM.box.map75) # map75

7 print("Average Precision: ", np.mean(resultM.box.p)) #

precision

8 print("Average Recall: ",np.mean(resultM.box.r)) # recall

9 print("Average F1: ",np.mean(resultM.box.f1)) #f1score

49

B.6 Script di Test

La valutazione �nale delle performance è stata condotta utilizzando uno script
dedicato per l'inferenza sul test set (test).

1 ...

2

3 folder = "/StreetSignSet/test/images"

4

5 #model = YOLO ("/ streetsignsense/yolov12n_run/weights/best.pt")

6 model = YOLO("/streetsignsense/yolo12s_run/weights/best.pt")

7 #model = YOLO ("/ streetsignsense/yolo12m_run/weights/best.pt")

8

9 image_files = sorted ([f for f in os.listdir(folder) if f.

endswith (('.jpg', '.png', '.jpeg'))])

10

11 for filename in image_files:

12 image_path = os.path.join(folder , filename)

13 print(f"\nRisultati per: {filename} ")

14

15 results = model(image_path , device='0,1')

16

17 # Immagine con Predizioni

18 prediction_image = results [0]. plot()

19

20 ...

21

22 cv2_imshow(prediction_image)

B.7 Script per l'Analisi delle Metriche

Per mantenere pulita la pipeline di addestramento, l'elaborazione avanzata dei dati
e la generazione dei gra�ci comparativi sono state delegate a un notebook dedicato.
Si rimanda al notebook yolo12modelanalysis (presente nella cartella del progetto)
per la consultazione degli script speci�ci utilizzati per:

� Calcolo e Visualizzazione mAP: Script per la rappresentazione dei valori
di mAP@50, mAP@50-95 e mAP@75 e la generazione delle curve di confronto.

� Analisi Precision, Recall e F1-Score: Codice per il calcolo e la visualiz-
zazione gra�ca dell'andamento di Precisione, Recall e F1 score per tutte le
varianti del modello.

� Confronto Training e Validation Loss: Script di confronto e la generazione
delle curve di loss per tutte le varianti.

50

Appendice C

Metriche

Figura C.1: Confronto training and validation box loss tra le tre varianti

Figura C.2: Confronto training and validation cls loss tra le tre varianti

51

Figura C.3: Confronto training and validation d� loss tra le tre varianti

(a) Curva Precision (b) Curva Recall

(c) Curva Precision-Recall (d) Curva F1-Score

Figura C.4: Curve delle metriche di valutazione per il modello YOLO12 Nano.

52

(a) Curva Precision (b) Curva Recall

(c) Curva Precision-Recall (d) Curva F1-Score

Figura C.5: Curve delle metriche di valutazione per il modello YOLO12 Small.

(a) Curva Precision (b) Curva Recall

(c) Curva Precision-Recall (d) Curva F1-Score

Figura C.6: Curve delle metriche di valutazione per il modello YOLOv12 Medium.

53

	Introduzione
	Contesto
	Rilevamento automatico dei segnali stradali

	Obiettivo Tecnico
	Finalità tecnica
	Architetture analizzate e dataset
	Strategia di training
	Analisi qualitativa delle predizioni
	Indicazioni per scenari applicativi

	Stato dell'Arte
	Panoramica sull'Object Detection
	Categorie di approcci
	Metodi two-stage
	Metodi one-stage
	Miglioramenti nei metodi one-stage
	Applicazioni in contesti real-time

	La famiglia YOLO
	Architettura One-Stage
	Evoluzione e Struttura Moderna
	Scalabilità
	Funzioni di perdita e strategie di ottimizzazione

	Modello YOLO12
	Evoluzione Architetturale
	Componenti Architetturali
	Sinergia tra CNN e Area Attention
	Vantaggi Applicativi e Pratici

	Metodologia
	Dataset - Street Sign Set
	Formato e Annotazioni
	Dimensioni e Distribuzione
	Classi del Dataset
	Data Augmentation
	Analisi della Distribuzione Spaziale (Heat Map)

	Ambiente di Sviluppo
	Infrastruttura Hardware Cloud
	Stack Software e Framework

	Fase di Addestramento
	Strategia di Transfer Learning e Fine-Tuning
	Configurazione, Ottimizzazione ed Early Stopping
	Tempi di Addestramento Effettivi
	Data Augmentation Online
	Monitoraggio Durante il Training

	Risultati e Analisi
	Metriche di Valutazione
	Risultati Quantitativi
	Analisi Comparativa
	Dettaglio per Classe: Matrici di Confusione

	Analisi Qualitativa
	Capacità di Astrazione
	Impatto della Frequenza delle Classi
	Ambiguità e Confusioni Inter-classe

	Discussione
	Interpretazione dei Risultati e Scenari Applicativi
	Analisi delle Criticità Operative
	Limiti del Lavoro
	Sviluppi Futuri

	Demo Web
	Accesso al Codice e alla Demo Live
	Architettura del Sistema
	Pipeline di Elaborazione
	Conversione e Caricamento del Modello
	Pre-processing dell'Input
	Inferenza e Risultati

	Funzionalità e Interfaccia Utente
	Gestione degli Input
	Pannello di Controllo
	Metriche in Tempo Reale

	Considerazioni sulle Prestazioni Web

	Conclusioni
	Riproducibilità e Risorse del Progetto
	Bibliografia
	Elenco Completo delle Classi del Dataset
	Dettagli Ambiente di Sviluppo e Codice
	Installazione dipendenze
	Verifica dell'Ambiente
	Generazione della Configurazione del Dataset
	Script di Addestramento
	Script di Validazione
	Script di Test
	Script per l'Analisi delle Metriche

	Metriche

